首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A 46-kDa glycoprotein, gp46, which binds collagen has been purified to homogeneity from L6 rat skeletal myoblasts. The procedure involves extraction of crude myoblast membranes with 1% sodium dodecyl sulfate followed by concanavalin A affinity chromatography and preparative gel electrophoresis. The sequence of 15 N-terminal amino acids had some resemblance to a sequence in myosin light chains. The oligosaccharide chains of the glycoprotein can be released by treatment with endoglycosidase H, suggesting that gp46 has high-mannose type of glycans. Galactose and sialic acid are not detected in the purified protein. gp46 is widely distributed and conserved in different cell lines as determined by immunoblotting using a monoclonal anti-gp46 antibody. High levels of gp46 were found in several fibroblastic and myogenic cell lines, but not in a hematopoietic cell line. Undifferentiated F9 embryonal carcinoma cells lacked gp46 but the glycoprotein was induced when the cells were made to differentiate in the presence of retinoic acid. Broad survey of gp46 in different cell lines also suggests that it is present mainly in those cell lines which attach to the substratum and produce collagens. Although the function of gp46 is not yet known, the evidence suggests that it is developmentally regulated and is probably involved in the synthesis or assembly of collagen in the endoplasmic reticulum.  相似文献   

2.
A major collagen-binding glycoprotein from rat L6 skeletal myoblasts, designated gp46, is phosphorylated in vivo. In this report the relative phosphorylation state of gp46 was examined using isoelectric focusing to identify the phosphorylated and unphosphorylated forms of gp46. Two major and one minor isoform of gp46 were identified that could be related to the phosphorylation state of gp46. The relative percentage of unphosphorylated to phosphorylated gp46 increased 10% in myoblasts heat-shocked at 42 degrees C for 24 h. Treatment of myoblasts with phorbol ester or dibutyryl-cAMP had no effect on the phosphorylation ratio of gp46. Transformation of L6 myoblasts with Rous sarcoma virus, likewise, had no effect on the phosphorylation ratio. However, ras-transformed L6 myoblasts showed a 12% increase in phosphorylation of gp46. These results indicate that gp46 does not undergo large changes in phosphorylation status. Pulse-chase labelling showed that the phosphorylation of gp46 occurred either co-translationally or soon after translation, suggesting that gp46 was phosphorylated by a constitutively active protein kinase.  相似文献   

3.
A gelatin-binding glycoprotein from L6 rat myoblasts, designated gp46, was shown to be phosphorylated in vivo. This phosphorylation was increased slightly (18%) by phorbol ester treatment of L6 suggesting protein kinase C involvement. Purified gp46 could be phosphorylated in vitro with protein kinase C, but not by the catalytic subunit of cAMP-dependent protein kinase. Comparison of the phosphotryptic peptide maps of in vitro and in vivo labeled gp46 suggested that in vivo phosphorylation of gp46 may be mediated by protein kinase C.  相似文献   

4.
Previous work using glycosylation inhibitors has suggested that high-mannose type but not complex type oligosaccharides on the surface of cells may play a role in the differentiation of skeletal myoblasts. Earlier, we had shown that a concanavalin A-resistant mutant derived from an L6 myoblast line fails to differentiate in a medium containing 10% horse serum. Here we show that one such concanavalin A-resistant mutant (D-1) which was reported to have oligosaccharides of the type Man(3-5)G1cNAc2, shows significant fusion ability when grown in media containing 1% horse serum. Lowering the serum concentration did not alter the dolichol-phosphate mannosyltransferase activity in D-1 which remained at low levels compared to L6. The incorporation of [3H]mannose in D-1 was found to be 60% of L6 in 10% serum whereas in 1% serum the incorporation into D-1 was further reduced to 30% of L6. [3H]mannose-labeled ConA-binding proteins isolated from L6 were quantitatively and qualitatively similar in cells grown in either 10 or 1% serum. However, in D-1 cells a further decrease in the ConA-binding ability of these glycoproteins was observed. Biochemical differentiation also occurs in D-1 upon fusion in 1% serum as seen by the increase in mRNA levels of the muscle-specific markers myosin light chain and troponin T. These results suggest the high-mannose type of oligosaccharides may not be involved in myoblast differentiation.  相似文献   

5.
We reported that RAGE (receptor for advanced glycation end products), a multiligand receptor of the immunoglobulin superfamily expressed in myoblasts, when activated by its ligand amphoterin (HMGB1), stimulates rat L6 myoblast differentiation via a Cdc42-Rac-MKK6-p38 mitogen-activated protein kinase pathway, and that RAGE expression in skeletal muscle tissue is developmentally regulated. We show here that inhibition of RAGE function via overexpression of a signaling deficient RAGE mutant (RAGE delta cyto) results in increased myoblast proliferation, migration, and invasiveness, and decreased apoptosis and adhesiveness, whereas myoblasts overexpressing RAGE behave the opposite, compared with mock-transfected myoblasts. These effects are accompanied by a decreased induction of the proliferation inhibitor, p21(Waf1), and increased induction of cyclin D1 and extent of Rb, ERK1/2, and JNK phosphorylation in L6/RAGE delta cyto myoblasts, the opposite occurring in L6/RAGE myoblasts. Neutralization of culture medium amphoterin negates effects of RAGE activation, suggesting that amphoterin is the RAGE ligand involved in RAGE-dependent effects in myoblasts. Finally, mice injected with L6/RAGE delta cyto myoblasts develop tumors as opposed to mice injected with L6/RAGE or L6/mock myoblasts that do not. Thus, the amphoterin/RAGE pair stimulates myoblast differentiation by the combined effect of stimulation of differentiation and inhibition of proliferation, and deregulation of RAGE expression in myoblasts might contribute to their neoplastic transformation.  相似文献   

6.
7.
Four independent rat L6 myoblast cell lines have been selected in a single step for resistance to the cytotoxic effects of the lectin concanavalin A (conA). In contrast to parental wild-type myoblast lines, all of the variant clones are unable to undergo normal cellular differentiation to form multinucleated myotubes or biochemical differentiation to produce an increase in the specific activity of the muscle-specific enzyme, creatine phosphokinase (CPK). The correlation between lectin resistance and loss of fusion potential is very tight; clonal variation studies show that there is less than a 2.8×10?8 chance that the two are not directly related. Membrane preparations from the conA-resistant myoblast lines incorporate significantly less GDP-[14C]mannose into the lipid intermediates of protein glycosylation than preparations from parental wild-type cells. Also, conversion of mannose label to fucose occurs in myoblasts and this pathway is more active in conA-resistant cells than wild-type cells. Reduced binding of labelled conA to the cell surfaces of variant myoblasts was observed which may result from alterations to membrane glycoprotein receptors. These studies suggest that mannosylated glycoproteins of the cell surface play a role in the development of the myotubes from myoblasts. Lectin-resistant myoblasts should be useful model systems for investigating what appears to be a pleiotropic mutation affecting the myogenesis process through membrane modifications.  相似文献   

8.
Fusion of mononucleated myoblasts to form multinucleated myofibers is an essential phase of skeletal myogenesis, which occurs during muscle development as well as during postnatal life for muscle growth, turnover, and regeneration. Many cell adhesion proteins, including integrins, have been shown to be important for myoblast fusion in vertebrates, and recently focal adhesion kinase (FAK), has been proposed as a key mediator of myoblast fusion. Here we focused on the possible role of PKC, the PKC isoform predominantly expressed in skeletal muscle, in myoblast fusion. We found that the expression of PKC is strongly up-regulated following freeze injury-induced muscle regeneration, as well as during in vitro differentiation of satellite cells (SCs; the muscle stem cells). Using both PKC knockout and muscle-specific PKC dominant-negative mutant mouse models, we observed delayed body and muscle fiber growth during the first weeks of postnatal life, when compared with wild-type (WT) mice. We also found that myofiber formation, during muscle regeneration after freeze injury, was markedly impaired in PKC mutant mice, as compared with WT. This phenotype was associated with reduced expression of the myogenic differentiation program executor, myogenin, but not with that of the SC marker Pax7. Indeed in vitro differentiation of primary muscle-derived SCs from PKC mutants resulted in the formation of thinner myotubes with reduced numbers of myonuclei and reduced fusion rate, when compared with WT cells. These effects were associated to reduced expression of the profusion genes caveolin-3 and β1D integrin and to reduced activation/phosphorylation of their up-stream regulator FAK. Indeed the exogenous expression of a constitutively active mutant form of PKC in muscle cells induced FAK phosphorylation. Moreover pharmacologically mediated full inhibition of FAK activity led to similar fusion defects in both WT and PKC-null myoblasts. We thus propose that PKC signaling regulates myoblast fusion by regulating, at least in part, FAK activity, essential for profusion gene expression.  相似文献   

9.
An expression vector was designed to test the structural requirements of the gp41 N terminus for human immunodeficiency virus type 1-induced membrane fusion. Mutations in the region coding for the N terminus of gp41 were found to disrupt glycoprotein expression because of deleterious effects on the Rev-responsive element (RRE). Insertion of an additional RRE in the 3'-noncoding sequence of env made possible efficient glycoprotein expression, irrespective of the mutations introduced into the RRE in the natural location. This permitted the insertion of the unique restriction site SpeI within the N-terminal sequences of gp41, allowing convenient and efficient mutation of the gp41 N terminus by using double-stranded synthetic oligonucleotides. Mutants with deletions of 1 to 7 amino acids of the N terminus were constructed. Expression and cleavage of all mutants were confirmed by Western immunoblot analysis with anti-gp41 antibodies. The capability of mutants to induce membrane fusion was monitored following transfection of HeLa-T4+ cell lines with wild-type and mutant expression vectors by electroporation and microinjection. The efficiency of cell-fusing activity decreased drastically with deletion of 3 and 4 amino acids and was completely lost with deletion of 5 amino acids. Cotransfection of the parent and mutant expression vectors resulted in reduced cell-fusing activity. The extent of this dominant interference by mutant glycoprotein paralleled the decrease in cell-fusing activity of the mutants alone. This suggests the existence of a specific N-terminal structure required for fusing activity. However, there does not appear to be a stringent requirement for the precise length of the N terminus. This finding is supported by the length variation of this region among natural human immunodeficiency virus type 1 isolates and is in contrast to the apparent stringency in the length of analogous N-terminal structures of influenza A virus and paramyxovirus fusion glycoproteins.  相似文献   

10.
11.
Mononucleated myoblasts divide in vitro until they attain confluency and fuse, forming multinucleated myotubes. Fusion is an extracellular Ca2+-dependent process. We used for our studies an established line of skeletal myoblasts (L6) as well as a non-fusing Myo- alpha-amanitin-resistant mutant of this line (Ama102). Our results show that extracellular calcium at concentrations which elicit myoblast fusion activates the phosphorylation of a protein species of 48 kD, present at the surface of mononucleated myoblasts of the fusing wild type (L6). At fusion, as the cells become independent of the extracellular calcium concentration for their further differentiation, this activation can no longer be observed. In fusion inhibition experiments, where we used lowered calcium levels, the phosphorylation of the 48 kD protein band is clearly decreased. When the myoblasts are fed with standard medium, they fuse rapidly and the phosphorylation of the 48 kD species is markedly increased. The above-described phenomenon takes place at the cell surface and is completed in a short time. The use of Myo- mutant showed that it is developmentally regulated. In view of our results, it is reasonable to postulate that Ca2+-activated phosphorylation of the cell surface could be on the basis of spontaneous myoblast fusion.  相似文献   

12.
To study the role of (pro)collagen synthesis in the differentiation of rat L6 skeletal myoblasts, a specific inhibitor of collagen synthesis, ethyl-3,4-dihydroxybenzoate (DHB), was utilized. It is shown that DHB reversibly inhibits both morphological and biochemical differentiation of myoblasts, if it is added to the culture medium before the cell alignment stage. The inhibition is alleviated partially by ascorbate, which along with alpha-ketoglutarate serves as cofactor for the enzyme, prolyl hydroxylase. DHB drastically decreases the secretion of procollagen despite an increase in the levels of the mRNA for pro alpha 1(I) and pro alpha 2(I) chains. Probably, the procollagen chains produced in the presence of DHB, being underhydroxylated, are unable to fold into triple helices and are consequently degraded in situ. Along with the inhibition of procollagen synthesis, DHB also decreases markedly the production of a collagen-binding glycoprotein (gp46) present in the ER. The results suggest that procollagen production and/or processing is needed as an early event in the differentiation pathway of myoblasts.  相似文献   

13.
Multinucleated myotubes develop by the sequential fusion of individual myoblasts. Using a convergence of genomic and classical genetic approaches, we have discovered a novel gene, singles bar (sing), that is essential for myoblast fusion. sing encodes a small multipass transmembrane protein containing a MARVEL domain, which is found in vertebrate proteins involved in processes such as tight junction formation and vesicle trafficking where--as in myoblast fusion--membrane apposition occurs. sing is expressed in both founder cells and fusion competent myoblasts preceding and during myoblast fusion. Examination of embryos injected with double-stranded sing RNA or embryos homozygous for ethane methyl sulfonate-induced sing alleles revealed an identical phenotype: replacement of multinucleated myofibers by groups of single, myosin-expressing myoblasts at a stage when formation of the mature muscle pattern is complete in wild-type embryos. Unfused sing mutant myoblasts form clusters, suggesting that early recognition and adhesion of these cells are unimpaired. To further investigate this phenotype, we undertook electron microscopic ultrastructural studies of fusing myoblasts in both sing and wild-type embryos. These experiments revealed that more sing mutant myoblasts than wild-type contain pre-fusion complexes, which are characterized by electron-dense vesicles paired on either side of the fusing plasma membranes. In contrast, embryos mutant for another muscle fusion gene, blown fuse (blow), have a normal number of such complexes. Together, these results lead to the hypothesis that sing acts at a step distinct from that of blow, and that sing is required on both founder cell and fusion-competent myoblast membranes to allow progression past the pre-fusion complex stage of myoblast fusion, possibly by mediating fusion of the electron-dense vesicles to the plasma membrane.  相似文献   

14.
We isolated and characterized two spontaneous, weakly leukemogenic mutants of Rauscher spleen focus-forming virus (R-SFFV) that contain mutations in nonoverlapping regions of the membrane envelope (env) glycoprotein gene. As reported previously (M. Ruta and D. Kabat, J. Virol. 35:844-853, 1980), the replication-defective R-SFFV encodes a membrane glycoprotein with an apparent Mr of 54,000 (gp54) which is structurally and immunologically related to the membrane envelope glycoproteins of dual-tropic murine leukemia viruses. Mutant R-SFFV clones 3-25 and 4-3 encode abnormally sized gp54-related glycoproteins with apparent Mrs of 52,000 (gp52) and 45,000 (gp45), respectively. Northern and Southern blot analyses of the mutant R-SFFV nucleic acids indicated that an insertion has occurred in the 3-25 env gene and that a deletion has occurred in the 4-3 env gene. Furthermore, restriction endonuclease analyses and comparisons of the fragmentation patterns of the wild-type and mutant glycoproteins generated by partial proteolysis with Staphylococcus aureus V8 protease indicated that the mutations affect nonoverlapping domains of the envelope glycoprotein (amino-terminal fragment affected in 3-25 glycoprotein and carboxyl-terminal fragment affected in 4-3 glycoprotein). Glycosylation inhibition studies indicated that the reduced size of gp52 is caused at least partly by loss of an asparagine-linked oligosaccharide. In addition, these mutant viruses have dramatically reduced leukemogenicities compared with wild-type R-SFFV. We conclude that the gp54 structural gene is required for initiation or amplification of the splenic erythroblast hyperplasia which characterizes the preleukemic phase of Rauscher disease.  相似文献   

15.
To understand the role of the lentivirus lytic peptide-1 region of the human immunodeficiency virus type 1 transmembrane glycoprotein (gp) 41 in viral infection, we examined the effects on virus replication of single amino acid deletions spanning this region in an infectious provirus of the HXB2 strain. Among the mutants analyzed, only the deletion of one of the two adjacent valine residues located at positions 832 and 833 (termed the Delta 833 mutant for simplicity) greatly reduced the steady-state, cell-associated levels of the Env precursor and gp120, as opposed to the wild-type virus. The altered Env phenotype resulted in severely impaired virus infectivity and gp120 incorporation into this mutant virion. Analyses of additional mutants with deletions at Ile-830, Ala-836, and Ile-840 demonstrated that the Delta 830 mutant exhibited the most significant inhibitory effect on Env steady-state expression. These results indicate that the N terminus of the lentivirus lytic peptide-1 region is critical for Env steady-state expression. Among the mutant viruses encoding Env proteins in which residues Val-832 and Val-833 were individually substituted by nonconserved amino acids Ala, Ser, or Pro, which were expected to disrupt the alpha-helical structure in the increasingly severe manner of Pro > Ser > Ala, only the 833P mutant exhibited significantly reduced steady-state Env expression. Pulse labeling and pulse-chase studies demonstrated that the Delta 830, Delta 833, and 833P mutants of Env proteins degraded more rapidly in a time-dependent manner after biosynthesis than did the wild-type Env. The results indicate that residue 830 and 833 mutations are likely to induce a conformational change in Env that targets the mutant protein for cellular degradation. Our study has implications about the structural determinants located at the N terminus of the lentivirus lytic peptide-1 sequence of gp41 that affect the fate of Env in virus-infected cells.  相似文献   

16.
17.
A virus-neutralizing monoclonal antibody specific for glycoprotein C (gC) of herpes simplex virus type 1 strain KOS was used to select a number of neutralization-resistant mutants. A total of 103 of these mutants also were resistant to neutralization by a pool of gC-specific antibodies and thus were operationally defined as gC-. Analysis of mutant-infected cell mRNA showed that a 2.7-kilobase mRNA, comparable in size to the wild-type gC mRNA, was produced by nearly all mutants. However, six mutants, gC-5, gC-13, gC-21, gC-39, gC-46, and gC-98, did not produce the normal-size gC mRNA but rather synthesized a novel 1.1-kilobase RNA species. These mutants had deletions of 1.6 kilobases in the coding sequence of the gC structural gene, which explains their gC- phenotype. Despite the production of an apparently normal mRNA by the remaining 97 mutants, only 7 mutants produced a detectable gC polypeptide. In contrast to wild-type gC, which is a membrane-bound glycoprotein with an apparent molecular weight of 130,000 (130K), five of these mutants quantitatively secreted proteins of lower molecular weight into the culture medium. These were synLD70 (101K), gC-8 (109K), gC-49 (112K), gC-53 (108K), and gC-85 (106K). The mutant gC-3 secreted a protein that was indistinguishable in molecular weight from wild-type KOS gC. Another mutant, gC-44, produced a gC protein which also was indistinguishable from wild-type gC by molecular weight and which remained cell associated. Pulse-labeling of infected cells in the presence and absence of the glycosylation inhibitor tunicamycin demonstrated that these proteins were glycosylated and provided estimates of the molecular weights of the nonglycosylated primary translation products. The smallest of these proteins was produced by synLD70 and was 48K, about two-thirds the size of the wild-type polypeptide precursor (73K). Physical mapping of the mutations in synLD70 and gC-8 by marker rescue placed these mutations in the middle third of the gC coding sequence. Mapping of the mutations in other gC- mutants, including two in which no protein product was detected, also placed these mutations within or very close to the gC gene. The biochemical and genetic data available on mutants secreting gC gene products suggest that secretion is due to the lack of a functional transmembrane anchor sequence on these mutant glycoproteins.  相似文献   

18.
Human immunodeficiency virus type 1 contains a transmembrane glycoprotein with an unusually long cytoplasmic domain. To determine the role of this domain in virus replication, a series of single nucleotide changes that result in the insertion of premature termination codons throughout the cytoplasmic domain has been constructed. These mutations delete from 6 to 192 amino acids from the carboxy terminus of gp41 and do not affect the amino acid sequence of the regulatory proteins encoded by rev and tat. The effects of these mutations on glycoprotein biosynthesis and function as well as on virus infectivity have been examined in the context of a glycoprotein expression vector and the viral genome. All of the mutant glycoproteins were synthesized, processed, and transported to the cell surface in a manner similar to that of the wild-type glycoprotein. With the exception of mutants that remove the membrane anchor domain, all of the mutant glycoproteins retained the ability to cause fusion of CD4-bearing cells. However, deletion of more than 19 amino acids from the C terminus of gp41 blocked the ability of mutant virions to infect cells. This defect in virus infectivity appeared to be due at least in part to a failure of the virus to efficiently incorporate the truncated glycoprotein. Similar data were obtained for mutations in two different env genes and two different target cell lines. These results indicate that the cytoplasmic domain of gp41 plays a critical role during virus assembly and entry in the life cycle of human immunodeficiency virus type 1.  相似文献   

19.
Thy-1 antigen is a well-characterized cell-surface glycoprotein known to be variably expressed in many different tissues, including lymphocytes, brain, and muscle. Its function remains unknown. In skeletal muscle, both in vivo and in vitro, the antigen has been reported on immature but not on adult tissue, and its disappearance corresponds roughly to the time of myoblast fusion. Using monoclonal H36 antibody to identify myoblasts unambiguously, we demonstrate here that Thy-1 is expressed only on a small (less than 1%) fraction of rat skeletal muscle myoblasts in heterogeneous primary cultures, but the number of myoblasts that express Thy-1 rises to a steady level of about 70% when fibroblasts are removed from secondary cultures. Restitution of fibroblasts or growth of purified myoblasts in medium conditioned by fibroblasts greatly suppresses this increase in myoblast Thy-1 expression. Thus an interaction between fibroblasts and myoblasts, mediated by a soluble nondialyzable molecule, modulates expression of Thy-1 on the myoblast outer membrane.  相似文献   

20.
The Gag protein of human immunodeficiency virus type 1 (HIV-1) associates with the envelope protein complex during virus assembly. The available evidence indicates that this interaction involves recognition of the gp41 cytoplasmic tail (CT) by the matrix protein (MA) region of Pr55(Gag). Here we show that substitution of Asp for Leu at position 49 (L49D) in MA results in a specific reduction in particle-associated gp120 without affecting the levels of gp41. Mutant virions were markedly reduced in single-cycle infectivity despite a relatively modest defect in fusion with target cells. Studies with HIV-1 particles containing decreased levels of envelope proteins suggested that the L49D mutation also inhibits a postentry step in infection. Truncation of the gp41 tail, or pseudotyping by vesicular stomatitis virus glycoprotein, restored both the fusion and infectivity of L49D mutant virions to wild-type levels. Truncation of gp41 also resulted in equivalent levels of gp120 on particles with and without the MA mutation and enhanced the replication of the L49D mutant virus in T cells. The impaired fusion and infectivity of L49D mutant particles were also complemented by a single point mutation in the gp41 CT that disrupted the tyrosine-containing endocytic motif. Our results suggest that an altered interaction between the MA domain of Gag and the gp41 cytoplasmic tail leads to dissociation of gp120 from gp41 during HIV-1 particle assembly, thus resulting in impaired fusion and infectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号