首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
The aim of this study was to investigate the relationship between endothelial dysfunction and low density lipoprotein (LDL) size and susceptibility to oxidation in nephrotic rats with or without deficiency of vitamin E and selenium. Four groups of male Wistar rats were studied: control (C), vitamin E and selenium deficient control (DefC), nephrotic (NS), and vitamin E and selenium deficient NS (DefNS). Nephrotic syndrome was induced by puromycin aminonucleoside. The molar ratio of vitamin E/LDL-cholesterol was significantly lower in DefNS, DefC rats, and NS vs. C rats. In comparison with control animals, vasodilation and LDL oxidability were significantly lower in nephrotic animals. LDL size was similar in all groups. Abnormal endothelial function in response to acetylcholine and carbachol was observed in NS animals compared to control rats. Relaxation response was inversely associated with an increase in LDL susceptibility to oxidation and with a lower molar ratio of vitamin E/LDL-c. LDL oxidability and LDL-c were the only variables independently associated with vasodilation. These results suggest that endothelial dysfunction of NS may be a consequence of the increased LDL susceptibility to oxidation, secondary to antioxidant deficiency.  相似文献   

2.
The incidence of atherosclerosis and related diseases increases with age. The aging process may enhance lipoprotein modification, which leads to an increase in the susceptibility of low density lipoprotein (LDL) and high density lipoprotein (HDL) to oxidation. Dehydroepiandrosterone (DHEA), the most abundant steroid hormone in humans, has been shown to have antiatherogenic effects. This hormone also decreases dramatically with age. In the present study, we were interested in determining the presence of DHEA/DHEAS (dehydroepiandrosterone sulfate) and changes in their concentrations in HDL and LDL lipoproteins with age. Moreover, we studied the susceptibility of LDL to oxidation with age in the presence or absence of vitamin E or DHEA. We demonstrated that vitamin E is unable to restore the decreased resistance to oxidation of LDL from elderly subjects to that of LDL obtained from young subjects. Furthermore, our results provide evidence that DHEA is an integral part of LDL and HDL and disappears to almost nondetectable levels during aging. The DHEA incorporated into the LDL from elderly subjects increased LDL resistance to oxidation in a concentration-dependent manner. The increased resistance provided by DHEA was higher than that with vitamin E. DHEA seems to act either by protecting vitamin E from disappearance from LDL under oxidation or by scavenging directly the free radicals produced during the oxidative process. Our results suggests that DHEA exerts an antioxidative effect on LDL, which could have antiatherogenic consequences. Careful clinical trials of DHEA replacement should determine whether this ex vivo effect could be translated into any measurable antiatherogenic (cardioprotective) action.  相似文献   

3.
Homocysteine, an atherogenic amino acid, promotes iron-dependent oxidation of low-density lipoprotein (LDL). We investigated whether vitamin C, a physiological antioxidant, could protect LDL from homocysteine-mediated oxidation. LDL (0.2 mg of protein/ml) was incubated at 37 degrees C with homocysteine (1000 microM) and ferric iron (10-100 microM) in either the absence (control) or presence of vitamin C (5-250 microM). Under these conditions, vitamin C protected LDL from oxidation as evidenced by an increased lag time preceding lipid diene formation (> or = 5 vs. 2.5 h for control), decreased thiobarbituric acid-reactive substances accumulation (< or = 19 +/- 1 nmol/mg when vitamin C > or = 10 microM vs. 32 +/- 3 nmol/mg for control, p <.01), and decreased lipoprotein anodic electrophoretic mobility. Near-maximal protection was observed at vitamin C concentrations similar to those in human blood (50-100 microM); also, some protection was observed even at low concentrations (5-10 microM). This effect resulted neither from altered iron redox chemistry nor enhanced recycling of vitamin E in LDL. Instead, similar to previous reports for copper-dependent LDL oxidation, we found that vitamin C protected LDL from homocysteine-mediated oxidation through covalent lipoprotein modification involving dehydroascorbic acid. Protection of LDL from homocysteine-mediated oxidation by vitamin C may have implications for the prevention of cardiovascular disease.  相似文献   

4.
Vitamin E is a lipophilic anti-oxidant that can prevent the oxidative damage of atherogenic lipoproteins. However, human trials with vitamin E have been disappointing, perhaps related to ineffective levels of vitamin E in atherogenic apoB-containing lipoproteins. Phospholipid transfer protein (PLTP) promotes vitamin E removal from atherogenic lipoproteins in vitro, and PLTP deficiency has recently been recognized as an anti-atherogenic state. To determine whether PLTP regulates lipoprotein vitamin E content in vivo, we measured alpha-tocopherol content and oxidation parameters of lipoproteins from PLTP-deficient mice in wild type, apoE-deficient, low density lipoprotein (LDL) receptor-deficient, or apoB/cholesteryl ester transfer protein transgenic backgrounds. In all four backgrounds, the vitamin E content of very low density lipoprotein (VLDL) and/or LDL was significantly increased in PLTP-deficient mice, compared with controls with normal plasma PLTP activity. Moreover, PLTP deficiency produced a dramatic delay in generation of conjugated dienes in oxidized apoB-containing lipoproteins as well as markedly lower titers of plasma IgG autoantibodies to oxidized LDL. The addition of purified PLTP to deficient plasma lowered the vitamin E content of VLDL plus LDL and normalized the generation of conjugated dienes. The data show that PLTP regulates the bioavailability of vitamin E in atherogenic lipoproteins and suggest a novel strategy for achieving more effective concentrations of anti-oxidants in lipoproteins, independent of dietary supplementation.  相似文献   

5.
A crucial and causative role in the pathogenesis of atherosclerosis is believed to be the oxidative modification of low density lipoprotein (LDL). The oxidation of LDL involves released free radical driven lipid peroxidation. Several lines of evidence support the role of oxidized LDL in atherogenesis. Epidemiologic studies have demonstrated an association between an increased intake of dietary antioxidant vitamins, such as vitamin E and vitamin C and reduced morbidity and mortality from coronary artery diseases. It is thus hypothesized that dietary antioxidants may help prevent the development and progression of atherosclerosis. The oxidation of LDL has been shown to be reduced by antioxidants, and, in animal models, improved antioxidants may offer possibilities for the prevention of atherosclerosis. The results of several on going long randomized intervention trials will provide valuahle information on the efficacy and safety of improved antioxidants in the prevention of atherosclerosis. This review a evaluates current literature involving antioxidants and vascular disease, with a particular focus on the potential mechanisms.  相似文献   

6.
Increased lipid peroxidation products were detected in a lipoprotein fraction containing very low density lipoprotein (VLDL) and low density lipoprotein (LDL) obtained from rats made diabetic by streptozotocin injection. The enhanced oxidation in the diabetic VLDL plus LDL fraction correlated with the in vitro toxicity of this lipoprotein fraction to proliferating fibroblasts. In contrast, high density lipoprotein (HDL) was not cytotoxic. That the increased oxidation and development of cytotoxic activity in the diabetic VLDL + LDL was related to the diabetes was shown by the fact that insulin treatment of diabetic animals inhibited both oxidation and cytotoxicity of VLDL + LDL. In contrast, treatment of diabetic rats with the antioxidants vitamin E or probucol after diabetes was established also inhibited both the in vivo oxidation and in vitro cytotoxicity of diabetic VLDL + LDL, but without altering hyperglycemia. Vitamin E or probucol treatment thus allowed separation of the oxidation process from the hyperglycemia occurring in experimental diabetes. The mechanisms by which diabetes in humans or experimental animals leads to the various manifestations of tissue damage are unknown; however, these studies demonstrate for the first time that a relationship exists between the in vivo oxidation of lipoproteins in diabetes and the potential for tissue damage as monitored by in vitro cytotoxicity. Furthermore, these results suggest that the mechanism for certain aspects of tissue damage accompanying experimental diabetes may be mediated by lipid peroxidation products.  相似文献   

7.
《Free radical research》2013,47(4-5):227-235
It was observed that during the storage of human extracellular fluids at – 20°C the azide-inhibitable ferroxidase activity of caeruloplasmin declined, whilst a new azide-resistant ferroxidase activity (ARFA) developed. The literature suggested that storage-induced ARFA might be due to either a poorly defined enzymatic activity of a low density lipoprotein (LDL) or to lipid peroxides formed within the different lipoprotein fractions. To study this further, the major lipoprotein classes were separated from human serum by density gradient centrifugation. After storage of the lipoprotein fractions, it was found that the LDL fraction had the highest specific activity of ARFA and the highest content of lipid peroxidation products, as assessed by diene conjugates. The ARFA of LDL correlated with its content of diene conjugates and TBA reactive material, which initially suggested that the Fe(II) oxidising activity of peroxidised LDL arose from the reduction of peroxides by Fe(II) in the classical reaction between the metal ion and free radical reduction of lipid peroxides. However. steady state kinetic analysis indicated an enzymic role of LDL in Fe(II) oxidation, with lipid peroxides acting as a substrate for the enzyme. These results indicate that LDL may contain a peroxidase activity. catalysing the oxidation of Fe(II) by lipid peroxides, as well as a ferrous oxidase activity where O2 is the oxidising substrate.  相似文献   

8.
The oxidative modification of low-density lipoprotein (LDL) may play an important role in atherogenesis. Our understanding of the mechanism of LDL oxidation and the factors that determine its susceptibility to oxidation is still incomplete. We have isolated LDL from 45 healthy individuals and studied the relationship between LDL fatty acid, vitamin E and β-carotene composition, intrinsic phospholipase A2-like activity and parameters of LDL oxidation. LDL was exposed to a copper ion-dependent oxidising system and the kinetics of oxidation studied by monitoring formation of fatty acid conjugated dienes. The length of the lag phase of inhibited lipid peroxidation was measured as well as the rate of lipid peroxidation during the propagation phase. There was no significant correlation between LDL antioxidant vitamin or fatty acid composition and lag time to LDL oxidation. Oleic acid was negatively correlated with the rate of LDL oxidation (r = −0.41, P < 0.01) whilst linoleic acid was significantly correlated with the extent of LDL oxidation measured by the production of total dienes (r = 0.34, P < 0.05). Interestingly, LDL vitamin E content was positively correlated with both the rate (r = 0.28, P < 0.05) and extent of LDL oxidation (r = 0.43, P < 0.01). LDL isolated from this group of subjects showed significant intrinsic phospholipase-like activity. The phospholipase activity, whilst not correlated with lag time, was significantly correlated with both rate (r = 0.43, P < 0.01) and total diene production (r = 0.44, P < 0.01) of LDL oxidation. We conclude that antioxidant content, fatty acid composition and intrinsic phospholipase activity have little influence on the lag time of Cu-induced LDL oxidation. These components do however, significantly influence both the rate and extent of LDL oxidation, with increased vitamin E, linoleic acid content and phospholipase activity associated with faster and more extensive oxidation. The possible pro-oxidant effect of vitamin E has interesting implications for the postulated ‘protective’ effects of vitamin E on atherogenesis.  相似文献   

9.
This study was aimed at determining the effect of vitamin E, vitamin C, and carnitine on intermittent hypobaric-hypoxia-induced oxidative stress (OS) in erythrocytes. For this purpose, male Wistar rats of 4 months of age were orally supplemented with one of the antioxidants prior to exposure to altitudes of 5700 m or 6300 m. Hemoglobin (Hb) and OS indices such as osmotic fragility and hemolysis were measured together with lipid peroxidation (LPO) and protein oxidation. The increase in Hb was accompanied by increase in activities of antioxidant enzymes, superoxide dismutase (SOD), and catalase (CAT) during exposure to both the altitudes without any further elevation by supplements. The extent of reduction in osmotic fragility and hemolysis by vitamin E and carnitine was greater at 6300 m than at 5700 m. Increase in LPO products, for example, malondialdehyde (MDA) and lipofuscin-like autofluorescent substances (AFS) was noticeable at both the altitudes, and vitamin E and carnitine were effective in reducing LPO. While protein oxidation products such as carbonyl content (PrC) and advanced oxidation protein products (AOPP) increased at 6300 m, protein sulphydryl (P-SH) content decreased. P-SH levels were restored on supplementation of antioxidants. Hence, our results indicate that vitamin E, vitamin C, and carnitine may be beneficial in overcoming OS and hemolysis under situations such as intermittent hypobaric hypoxia (IHH) and hypobarotherapy wherein hypoxia is used to correct many pathological situations in humans. Further, this study suggests that supplementation of vitamin E, vitamin C, and L-carnitine alone and not in combination can be beneficial in attenuating the OS associated with IHH compared to the unsupplemented rats exposed to two different altitudes.  相似文献   

10.
The kinetics of the oxidation of human low densit) lipoprotein (LDL) can be measured continuously by monitoring the change of the 234 nm diene absorption. The time-course shows three consecutive phases, a lag-phase during which the diene absorption increases only weakly. a propagation phase with a rapid increase of the diene absorption and finally a decomposition phase. The increase of the dienes is highly correlated with the increase of MDA or lipid hydroperoxides. The duration of the lag-phase is determined by the endogenous antioxidants contained in LDL (vitamin E. carotenoids. retinylstearate). Water-soluble antioxidants (ascorbic acid. urate) added in micromolar concentrations prolong the lag-phase in a concentration-dependent manner. The determination of the lag-phase is a convenient and objective procedure for determining the susceptibility of LDL from different donors towards oxidation as well as effects of pro-and antioxidants.  相似文献   

11.
The oxidative modification of low density lipoprotein (LDL) is thought to play an important role in atherogenesis. Drugs of -hydroxy--methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) family are usually used as a very effective lipid-lowering preparations but they simultaneously block biosynthesis of both cholesterol and ubiquinone Q10 (coenzyme Q), which is an intermediate electron carrier in the mitochondrial respiratory chain. It is known that reduced form of ubiquinone Q10 acts in the human LDL as very effective natural antioxidant. Daily per os administration of HMG-CoA reductase inhibitor simvastatin to rats for 30 day had no effect on high-energy phosphates (adenosin triphosphate, creatine phosphate) content in liver but decreased a level of these substances in myocardium. We study the Cu2+-mediated susceptibility of human LDL to oxidation and the levels of free radical products of LDL lipoperoxidation in LDL particles from patients with atherosclerosis after 3 months treatment with natural antioxidants vitamin E as well as during 6 months administration of HMG-CoA reductase inhibitors such as pravastatin and cerivastatin in monotherapy and in combination with natural antioxidant ubiquinone Q10 or synthetic antioxidant probucol in a double-blind placebo-controlled trials. The 3 months of natural antioxidant vitamin E administration (400 mg daily) to patients did not increase the susceptibility of LDL to oxidation. On the other hand, synthetic antioxidant probucol during long-time period of treatment (3–6 months) in low-dose (250 mg daily) doesn't change the lipid metabolism parameters in the blood of patients but their high antioxidant activity was observed. Really, after oxidation of probucol-contained LDL by C-15 animal lipoxygenase in these particles we identified the electron spin resonance signal of probucol phenoxyl radical that suggests the interaction of LDL-associated probucol with lipid radicals in vivo. We observed that 6 months treatment of patients with pravastatine (40 mg daily) or cerivastatin (0.4 mg daily) was followed by sufficiently accumulation of LDL lipoperoxides in vivo. In contrast, the 6 months therapy with pravastatin in combination with ubiquinone Q10 (60 mg daily) sharply decreased the LDL initial lipoperoxides level whereas during treatment with cerivastatin in combination with probucol (250 mg daily) the LDL lipoperoxides concentration was maintained on an invariable level. Therefore, antioxidants may be very effective in the prevention of atherogenic oxidative modification of LDL during HMG-CoA reductase inhibitors therapy.  相似文献   

12.
The aim of this study was to investigate the effects of genistein supplementation in a vitamin E-deficient diet on the genistein concentrations and the lipid oxidation of serum, liver and low-density lipoprotein (LDL) of hamsters. Thirty-six male hamsters were randomly divided into three groups and fed a vitamin E-deficient semisynthetic diet (AIN-76) containing different levels of genistein, i.e., G0 (control group, genistein-free diet), G50 (50 mg genistein/kg diet) and G200 (200 mg genistein/kg diet) for 5 weeks. The concentrations of genistein in serum and liver significantly increased with the increase of genistein supplementation. The vitamin E contents in LDL were higher in hamsters fed G50 or G200 diets than in hamsters fed genistein-free diet. Genistein supplementation to hamsters significantly reduced the propagation rate during conjugated diene formation of LDL oxidation, and the lag time of LDL oxidation in hamsters fed G200 diets was significantly lower than that of G0 diets. In addition, genistein supplementation significantly raised serum total antioxidant capacity and decreased the thiobarbituric acid-reactive substances (TBARS) of LDL and liver in hamsters. However, no significant differences in TBARS were found in serum, irrespective of genistein addition. On the other hand, the relative contents of polyunsaturated fatty acids in LDL were decreased after genistein supplementation. There was a negative correlation between lag time and P/S ratio, and a positive correlation between lag time and vitamin E contents. These data demonstrate that genistein supplementation markedly increased its concentrations in body tissues and reduced oxidative stress of lipid oxidation of serum, liver and LDL.  相似文献   

13.
人血浆低密度脂蛋白亚组分氧化反应敏感性的比较   总被引:6,自引:0,他引:6  
本文对3种LDL亚组分在体外对Cu^2+催化氧化反应敏感性进行了比较。结果表明,随氧化时间延长,各LDL亚组分的电泳迁移率均增加。测定脂质过氧化物的含量以及用结合二烯法测定氧化反应的潜伏期,发现较高密度的LDL亚组分更易氧化。荧光免疫测定结果显示,较高密度LDL中载脂蛋白B上新生的4-羟壬烯醛抗原决定簇的表达高于较低密度的LDL,从而证明较高密度的LDL亚组分对氧化反应的敏感性高于较低密度的亚组分  相似文献   

14.
Objective: To correlate the susceptibility of low‐(LDL) and very‐low‐density lipoprotein to oxidation in vitro and the concentrations of serum antibodies against malondialdehyde‐modified LDL and plasma vitamin E with the anthropometric and laboratory characteristics of obesity. Research Methods and Procedures: A total of 75 nondiabetic, normotensive obese patients were assigned to one of four groups according to their body mass index (BMI): moderately obese (30 ≤ BMI ≤ 34.9 kg/m2, n = 11), severely obese (35 ≤ BMI ≤ 39.9 kg/m2, n = 20), morbidly obese (40 ≤ BMI ≤ 50 kg/m2, n = 29), and very severely obese (BMI > 50 kg/m2, n = 15). Results: The oxidation lag time for LDL from patients with a BMI ≥35 kg/m2 was shorter than that for LDL from non‐obese controls (n = 13), whereas very‐low‐density lipoprotein oxidation lag times were not significantly different. The serum antibodies against modified LDL were similar in all groups, whereas the plasma vitamin E concentrations of obese patients were decreased (p ≤ 0.01). There was a negative correlation between LDL oxidation lag time and BMI (r = ?0.35, p = 0.0008), and between plasma vitamin E and BMI (r = ?0.53, p < 0.0001) and waist‐to‐hip ratio (r = ?0.40, p = 0.0003). Discussion: The LDL of nondiabetic, normotensive obese patients is more readily oxidized, and plasma vitamin E concentrations are low. These are both risk factors for coronary heart disease.  相似文献   

15.
Although it has been known for long time that atherosclerosis is associated with lipid deposition, only recently it has been accepted that the plasmatic concentration of cholesterol, especially LDL cholesterol, is a risk factor for atherosclerosis. However, chemically modified LDL, but not native LDL, is able to induce the formation of foam cells, the hallmark of atherosclerosis. LDL oxidation is likely to be the most important form of LDL modification in humans. In biochemical terms, LDL oxidation is a free radical driven chain reaction where polyunsaturated fatty acids are converted to lipid peroxides, which easily decompose to many products, including biologically active aldehydes. The assay of LDL oxidation in biological fluids is problematic; direct assays detect a product of LDL oxidation whereas indirect assays give an indicator of LDL oxidation susceptibility. In general, epidemiological studies support the concept that the level of plasmatic lipophilic antioxidants, tocopherols and carotenoids, is low in populations at increased risk for atherosclerosis. However, clinical trials based on vitamin E as antioxidant showed inconclusive results, suggesting that supplementation with vitamin E is not generically recommended for atherosclerotic patients. These results, however, do not contradict that oxidation of lipoprotein is involved in atherosclerosis; rather, this negative outcome raises a number of considerations such as the need for a reliable marker of lipoprotein oxidation in plasma and a more complete information about the physiological triggers of lipoprotein oxidation.  相似文献   

16.
The purpose of this article is to summarise our studies, in which the main determinants and absorption of plasma coenzyme Q10 (Q10, ubiquinone) have been assessed, and the effects of moderate dose oral Q10 supplementation on plasma antioxidative capacity, lipoprotein oxidation resistance and on plasma lipid peroxidation investigated. All the supplementation trials carried out have been blinded and placebo-controlled clinical studies. Of the determinants of Q10, serum cholesterol, serum triglycerides, male gender, alcohol consumption and age were found to be associated positively with plasma Q10 concentration. A single dose of 30 mg of Q10, which is the maximum daily dose recommended by Q10 producers, had only a marginal elevating effect on plasma Q10 levels in non-Q10-deficient subjects. Following supplementation, a dose-dependent increase in plasma Q10 levels was observed up to a daily dose of 200 mg, which resulted in a 6.1-fold increase in plasma Q10 levels. However, simultaneous supplementation with vitamin E resulted in lower plasma Q10 levels. Of the lipid peroxidation measurements, Q10 supplementation did not increase LDL TRAP, plasma TRAP, VLDL+LDL oxidation resistance nor did it decrease LDL oxidation susceptibility ex vivo. Q10 with minor vitamin E dose neither decreased exercise-induced lipid peroxidation ex vivo nor muscular damage. Q10 supplementation might, however, decrease plasma lipid peroxidation in vivo, as assessed by the increased proportion of plasma ubiquinol (reduced form, Q10H 2 ) of total Q10. High dose vitamin E supplementation decreased this proportion, which suggests in vivo regeneration of tocopheryl radicals by ubiquinol.  相似文献   

17.
The purpose of this article is to summarise our studies, in which the main determinants and absorption of plasma coenzyme Q10 (Q10, ubiquinone) have been assessed, and the effects of moderate dose oral Q10 supplementation on plasma antioxidative capacity, lipoprotein oxidation resistance and on plasma lipid peroxidation investigated. All the supplementation trials carried out have been blinded and placebo-controlled clinical studies. Of the determinants of Q10, serum cholesterol, serum triglycerides, male gender, alcohol consumption and age were found to be associated positively with plasma Q10 concentration. A single dose of 30 mg of Q10, which is the maximum daily dose recommended by Q10 producers, had only a marginal elevating effect on plasma Q10 levels in non-Q10-deficient subjects. Following supplementation, a dose-dependent increase in plasma Q10 levels was observed up to a daily dose of 200 mg, which resulted in a 6.1-fold increase in plasma Q10 levels. However, simultaneous supplementation with vitamin E resulted in lower plasma Q10 levels. Of the lipid peroxidation measurements, Q10 supplementation did not increase LDL TRAP, plasma TRAP, VLDL+LDL oxidation resistance nor did it decrease LDL oxidation susceptibility ex vivo. Q10 with minor vitamin E dose neither decreased exercise-induced lipid peroxidation ex vivo nor muscular damage. Q10 supplementation might, however, decrease plasma lipid peroxidation in vivo , as assessed by the increased proportion of plasma ubiquinol (reduced form, Q10H 2 ) of total Q10. High dose vitamin E supplementation decreased this proportion, which suggests in vivo regeneration of tocopheryl radicals by ubiquinol.  相似文献   

18.
Twelve clinically healthy subjects participated in a vitamin E supplementation study. Eight were given daily dosages of 150, 225, 800, or 1200 IU RRR-alpha-tocopherol for 21 days (two persons per dose) and four received placebo. Prior, during, and after the supplementation period, alpha-tocopherol, gamma-tocopherol, and carotenoids were determined in plasma and low density lipoprotein (LDL). The maximum levels of alpha-tocopherol were 1.7- to 2.5-times the baseline values in plasma and 1.7- to 3.1-times in LDL. A high correlation existed between alpha-tocopherol in plasma and LDL. gamma-Tocopherol significantly decreased in plasma and LDL during vitamin E supplementation. No significant influence on the lipoprotein and lipid status and carotenoid levels of the participants occurred throughout the supplementation. The resistance of LDL against copper-mediated oxidation was also measured. The oxidation resistance of LDL was significantly higher during vitamin E supplementation. However, the efficacy of vitamin E in protecting LDL varied from person to person. The statistical evaluation of all data gave a correlation of r2 = 0.51 between alpha-tocopherol in LDL and the oxidation resistance as measured by the length of the lag-phase preceding the oxidation of LDL. No association was seen between levels of carotenoids and vitamin E in plasma and LDL. The present study clearly shows that in humans the oxidation resistance of LDL can be increased by vitamin E supplementation.  相似文献   

19.
To identify dietary phenolic compounds capable of improving vitamin E status, male Sprague-Dawley rats were fed for 4 weeks either a basal diet (control) with 2 g/kg cholesterol and an adequate content of vitamin E or the basal diet fortified with quercetin (Q), (-)-epicatechin (EC), or (+)-catechin (C) at concentrations of 2 g/kg. All three catechol derivatives substantially increased concentrations of alpha-tocopherol (alpha-T) in blood plasma and liver. To study potential mechanisms underlying the observed increase of alpha-T, the capacities of the flavonoids to i) protect alpha-T from oxidation in LDL exposed to peroxyl radicals, ii) reduce alpha-tocopheroxyl radicals (alpha-T (.) ) in SDS micelles, and iii) inhibit the metabolism of tocopherols in HepG2 cells were determined. All flavonoids protected alpha-T from oxidation in human LDL ex vivo and dose-dependently reduced the concentrations of alpha-T (.) . None of the test compounds affected vitamin E metabolism in the hepatocyte cultures. In conclusion, fortification of the diet of Sprague-Dawley rats with Q, EC, or C considerably improved their vitamin E status. The underlying mechanism does not appear to involve vitamin E metabolism but may involve direct quenching of free radicals or reduction of the alpha-T (.) by the flavonoids.  相似文献   

20.
Background LDL (low-density lipoprotein) oxidation is a key trigger factor for the development of atherosclerosis. Relatively few studies exist on the impact of dietary fibre on LDL oxidation. This study was undertaken to evaluate the influence of a novel fibre mix of fenugreek seed powder, guar gum and wheat bran (Fibernat) on LDL oxidation induced by an atherogenic diet. Method Male Wistar albino rats were administered one of the following diets: (1) a control diet that was fibre-free (Group I); (2) an atherogenic diet containing 1.5% cholesterol and 0.1% cholic acid (Group II) or (3) an atherogenic diet supplemented with Fibernat (Group III). Peroxidative changes in low-density lipoprotein (LDL) and the oxidative susceptibility of LDL and the LDL + VLDL (very low-density lipoprotein) fraction were determined. As a corollary to the oxidative modification theory, the titer of autoantibodies to oxidised LDL (oxLDL) was determined at various time points of the study. In addition, plasma homocysteine (tHcy) and lipoprotein (Lp (a)), apolipoprotein (apoB), cholesterol, triglyceride, phospholipid and α-tocopherol content of LDL were determined. Results A decrease in malonaldehyde (MDA) content (p < 0.05) and relative electrophoretic mobility (REM) of LDL was observed in the group III rats as compared to the group II rats. An increase in lag time to oxidation (p < 0.01) and decrease in maximum oxidation (p < 0.01) and oxidation rate (p < 0.01) were observed in the LDL + VLDL fraction of group III rats. In group II rats, formation of autoantibodies to oxLDL occurred at an earlier time point and at levels greater than in the group III rats. Fibernat, had a sparing effect on LDL α-tocopherol, which was about 51% higher in the group III rats than in the group II rats; apo B content of LDL was reduced by 37.6% in group III rats. LDL of group III rats displayed a decrease in free and ester cholesterol (p < 0.01) as compared to that of group II. A decrease in plasma homocysteine (p < 0.01) and an increase in GSH (p < 0.05) were also observed in group III rats when compared with that of group II. Conclusion Fibernat administration appears to combat oxidative stress resulting in a trend to lower oxidative modification of LDL. In addition, the cholesterol and apo B content of LDL were reduced significantly with a sparing effect on LDL α-tocopherol. This novel fibre preparation could be an effective diet therapy and therefore needs further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号