首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We identified the molecular structures, including the stereochemistry, of all carotenoids in Thermosynechococcus elongatus strain BP-1. The major carotenoid was beta-carotene, and its hydroxyl derivatives of (3R)-beta-cryptoxanthin, (3R,3'R)-zeaxanthin, (2R,3R,3'R)-caloxanthin and (2R,3R,2'R,3'R)-nostoxanthin were also identified. The myxol glycosides were identified as (3R,2'S)-myxol 2'-fucoside and (2R,3R,2'S)-2-hydroxymyxol 2'-fucoside. 2-Hydroxymyxol 2'-fucoside is a novel carotenoid, and similar carotenoids of 4-hydroxymyxol glycosides were previously named aphanizophyll. Ketocarotenoids, such as echinenone and 4-ketomyxol, which are unique carotenoids in cyanobacteria, were absent, and genes coding for both beta-carotene ketolases, crtO and crtW, were absent in the genome. From a homology search, the Tlr1917 amino acid sequence was found to be 41% identical to 2,2'- beta-hydroxylase (CrtG) from Brevundimonas sp. SD212, which produces nostoxanthin from zeaxanthin. In the crtG disruptant mutant, 2-hydroxymyxol 2'-fucoside, caloxanthin and nostoxanthin were absent, and the levels of both myxol 2'-fucoside and zeaxanthin were higher. Therefore, the gene has a CrtG function for both myxol to 2-hydroxymyxol and zeaxanthin to nostoxanthin. This is the first functional identification of CrtG in cyanobacteria. We also investigated the distribution of crtG-like genes, and 2-hydroxymyxol and/or nostoxanthin, in cyanobacteria. Based on the identification of the carotenoids and the completion of the entire nucleotide sequence of the genome in T. elongatus, we propose a biosynthetic pathway of the carotenoids and the corresponding genes and enzymes.  相似文献   

2.
We identified the molecular structures of carotenoids in some Anabaena and Nostoc species. The myxoxanthophyll and ketomyxoxanthophyll in Anabaena (also known as Nostoc) sp. PCC 7120, Anabaena variabilis IAM M-3, Nostoc punctiforme PCC 73102 and Nostoc sp. HK-01 were (3R,2'S)-myxol 2'-fucoside and (3S,2'S)-4-ketomyxol 2'-fucoside, respectively. The glycoside moiety of the pigments was fucose, not rhamnose. The major carotenoids were beta-carotene and echinenone, and the minor ones were beta-cryptoxanthin, zeaxanthin, canthaxanthin and 3'-hydroxyechinenone. Based on the identification of the carotenoids and the completion of the entire nucleotide sequence of the genome in Anabaena sp. PCC 7120 and N. punctiforme PCC 73102, we proposed a biosynthetic pathway for the carotenoids and the corresponding genes and enzymes. Since only zeta-carotene desaturase (CrtQ) from Anabaena sp. PCC 7120 and beta-carotene ketolase (CrtW) from N. punctiforme PCC 73102 have been functionally identified, the other genes were searched by sequence homology only from the functionally confirmed genes. Finally, we investigated the phylogenetic relationships among some Anabaena and Nostoc species, including some newly isolated species.  相似文献   

3.
To elucidate the biosynthetic pathways of carotenoids, especially myxol 2'-glycosides, in cyanobacteria, Anabaena sp. strain PCC 7120 (also known as Nostoc sp. strain PCC 7120) and Synechocystis sp. strain PCC 6803 deletion mutants lacking selected proposed carotenoid biosynthesis enzymes and GDP-fucose synthase (WcaG), which is required for myxol 2'-fucoside production, were analyzed. The carotenoids in these mutants were identified using high-performance liquid chromatography, field desorption mass spectrometry, and (1)H nuclear magnetic resonance. The wcaG (all4826) deletion mutant of Anabaena sp. strain PCC 7120 produced myxol 2'-rhamnoside and 4-ketomyxol 2'-rhamnoside as polar carotenoids instead of the myxol 2'-fucoside and 4-ketomyxol 2'-fucoside produced by the wild type. Deletion of the corresponding gene in Synechocystis sp. strain PCC 6803 (sll1213; 79% amino acid sequence identity with the Anabaena sp. strain PCC 7120 gene product) produced free myxol instead of the myxol 2'-dimethyl-fucoside produced by the wild type. Free myxol might correspond to the unknown component observed previously in the same mutant (H. E. Mohamed, A. M. L. van de Meene, R. W. Roberson, and W. F. J. Vermaas, J. Bacteriol. 187:6883-6892, 2005). These results indicate that in Anabaena sp. strain PCC 7120, but not in Synechocystis sp. strain PCC 6803, rhamnose can be substituted for fucose in myxol glycoside. The beta-carotene hydroxylase orthologue (CrtR, Alr4009) of Anabaena sp. strain PCC 7120 catalyzed the transformation of deoxymyxol and deoxymyxol 2'-fucoside to myxol and myxol 2'-fucoside, respectively, but not the beta-carotene-to-zeaxanthin reaction, whereas CrtR from Synechocystis sp. strain PCC 6803 catalyzed both reactions. Thus, the substrate specificities or substrate availabilities of both fucosyltransferase and CrtR were different in these species. The biosynthetic pathways of carotenoids in Anabaena sp. strain PCC 7120 are discussed.  相似文献   

4.
We identified the molecular structures of the carotenoids in Synechocystis sp. PCC 6803. Myxoxanthophyll in this cyanobacterium was myxol 2'-dimethyl-fucoside, (3R,2'S)-myxol 2'-(2,4-di-O-methyl-alpha-L-fucoside). The sugar moiety of the pigment was not rhamnose but dimethylated fucose, which has not been reported in carotenoid glycosides. The other carotenoids were beta-carotene, (3R,3'R)-zeaxanthin, echinenone, (3'R)-3'-hydroxyechinenone and deoxymyxol 2'-dimethyl-fucoside, (2'S)-deoxymyxol 2'-(2,4-di-O-methyl-alpha-L-fucoside). Generally, the group of polar carotenoids in cyanobacteria is referred to as myxoxanthophyll, and the structure is considered to be myxol 2'-rhamnoside. Since the name myxoxanthophyll can not specify the sugar moiety and the identification of the sugar moiety is unfeasible in many cyanobacteria, we propose the following naming convention: when the sugar moiety is unknown, the name is myxol glycoside, when known, as in the case of rhamnose and alpha-L-fucose, they should be named myxol 2'-rhamnoside and myxol 2'-alpha-L-fucoside, respectively.  相似文献   

5.
多变鱼腥藻ATCC 29413有潜力发展为异养生长产异形胞蓝藻的研究模式种, 但由于细胞内的限制-修饰系统等原因, 其基因转移效率极低。研究克隆了该藻株的两个甲基化酶(M. AvaⅠ和M. AvrⅡ)基因ava_3181和ava_4359, 构建了辅助质粒pHB6088, 对运载质粒进行甲基化保护以避免被细胞中的限制酶切割。以ava_1237和ava_4412基因为例, 研究证明利用该辅助质粒和接合转移系统可通过双交换对多变鱼腥藻ATCC 29413的基因实现一步插入失活。  相似文献   

6.
Mochimaru M  Masukawa H  Takaichi S 《FEBS letters》2005,579(27):6111-6114
Two beta-carotene ketolases, CrtW and CrtO, are widely distributed in bacteria, although they show no significant sequence homology with each other. The cyanobacterium Anabaena sp. PCC 7120 was found to have two homologous genes. In the crtW deleted mutant, myxol 2'-fucoside was present, but ketomyxol 2'-fucoside was absent. In the crtO deleted mutant, beta-carotene was accumulated, and the amount of echinenone was decreased. Therefore, CrtW catalyzed myxol 2'-fucoside to ketomyxol 2'-fucoside, and CrtO catalyzed beta-carotene to echinenone. This cyanobacterium was the first species found to have both enzymes, which functioned in two distinct biosynthetic pathways.  相似文献   

7.
We isolated three orange or yellow pigment-producing marine bacteria, strains 04OKA-13-27 (MBIC08261), 04OKA-17-12 (MBIC08260), and YM6-073 (MBIC06409), off the coast of Okinawa Prefecture in Japan. These strains were classified as novel species of the family Flavobacteriaceae based on their 16S rRNA gene sequence. They were cultured, and the major carotenoids produced were purified by chromatographic methods. Their structures were determined by spectral data to be (3R)-saproxanthin (strain 04OKA-13-27), (3R,2'S)-myxol (strain YM6-073), and (3R,3'R)-zeaxanthin (strains YM6-073 and 04OKA-17-12). Saproxanthin and myxol, which are monocyclic carotenoids rarely found in nature, demonstrated significant antioxidative activities against lipid peroxidation in the rat brain homogenate model and a neuro-protective effect from L-glutamate toxicity.  相似文献   

8.
9.
Cyanobacteria produce some carotenoids. We identified the molecular structures, including the stereochemistry, of all the carotenoids in the terrestrial cyanobacterium, Nostoc commune NIES-24 (IAM M-13). The major carotenoid was β-carotene. Its hydroxyl derivatives were (3R)-β-cryptoxanthin, (3R,3′R)-zeaxanthin, (2R,3R,3′R)-caloxanthin, and (2R,3R,2′R,3′R)-nostoxanthin, and its keto derivatives were echinenone and canthaxanthin. The unique myxol glycosides were (3R,2′S)-myxol 2′-fucoside and (2R,3R,2′S)-2-hydroxymyxol 2′-fucoside. This is only the second species found to contain 2-hydroxymyxol. We propose possible carotenogenesis pathways based on our identification of the carotenoids: the hydroxyl pathway produced nostoxanthin via zeaxanthin from β-carotene, the keto pathway produced canthaxanthin from β-carotene, and the myxol pathway produced 2-hydroxymyxol 2′-fucoside via myxol 2′-fucoside. This cyanobacterium was found to contain many kinds of carotenoids and also displayed many carotenogenesis pathways, while other cyanobacteria lack some carotenoids and a part of carotenogenesis pathways compared with this cyanobacterium.  相似文献   

10.
11.
HetR, a serine type protease, plays an important role in heterocyst differentiation in filamentous cyanobacteria. We isolated and sequenced the hetR genes from different heterocystous and filamentous nonheterocystous cyanobacteria. The hetR gene in the heterocyst forming Anabaena variabilis ATCC 29413 FD was interrupted by interposon mutagenesis (mutant strain WSIII8). This mutant does not form heterocysts and shows no diazotrophic growth under aerobic conditions. However, under anaerobic N(2)-fixing conditions, the WSIII8 cells are able to grow, and high nitrogenase (Nif2) activity is detectable. Nif2 expression was demonstrated in each vegetative cell of the filament by immunolocalization 4 h after nitrogen step-down.  相似文献   

12.
T Thiel 《Journal of bacteriology》1993,175(19):6276-6286
Anabaena variabilis ATCC 29413 is a heterotrophic, nitrogen-fixing cyanobacterium that has been reported to fix nitrogen and reduce acetylene to ethane in the absence of molybdenum. DNA from this strain hybridized well at low stringency to the nitrogenase 2 (vnfDGK) genes of Azotobacter vinelandii. The hybridizing region was cloned from a lambda EMBL3 genomic library of A. variabilis, mapped, and sequenced. The deduced amino acid sequences of the vnfD and vnfK genes of A. variabilis showed only about 56% similarity to the nifDK genes of Anabaena sp. strain PCC 7120 but were 76 to 86% similar to the anfDK or vnfDK genes of A. vinelandii. The organization of the vnf gene cluster in A. variabilis was similar to that of A. vinelandii. However, in A. variabilis, the vnfG gene was fused to vnfD; hence, this gene is designated vnfDG. A vnfH gene was not contiguous with the vnfDG gene and has not yet been identified. A mutant strain, in which a neomycin resistance cassette was inserted into the vnf cluster, grew well in a medium lacking a source of fixed nitrogen in the presence of molybdenum but grew poorly when vanadium replaced molybdenum. In contrast, the parent strain grew equally well in media containing either molybdenum or vanadium. The vnf genes were transcribed in the absence of molybdenum, with or without vanadium. The vnf gene cluster did not hybridize to chromosomal DNA from Anabaena sp. strain PCC 7120 or from the heterotrophic strains, Nostoc sp. strain Mac and Nostoc sp. strain ATCC 29150. A hybridizing ClaI fragment very similar in size to the A. variabilis ClaI fragment was present in DNA isolated from several independent, cultured isolates of Anabaena sp. from the Azolla symbiosis.  相似文献   

13.
A genomic DNA fragment with carotenogenic genes involved in myxol biosynthesis (3′,4′-didehydro-1′,2′-dihydro-β,ψ-carotene-3,1′,2′-triol) was cloned from Flavobacterium P99-3. It contains a gene highly homologous to crtA from purple bacteria encoding there an acyclic carotenoid 2-ketolase. Since no ketolation step is involved in myxol biosynthesis, the function of crtA-OH from Flavobacterium was assigned by complementation in Escherichia coli engineered to synthesize demethylspheroidene and 1′-hydroxy-demethylspheroidene. Upon co-expression of crtA-OH, the formation of 2-hydroxy derivatives of both carotenoids assigns CrtA-OH as a novel carotenoid hydroxylase. The gene was used to re-construct myxol biosynthesis in E. coli successfully. Additionally, 1′,2′-dihydroxytorulene and 1,2,1′-trihydroxy-3,4,3′,4′-tetradehydrolycopene were obtained. Their generation demonstrates that a new class of 2-hydroxy carotenoids can now be pursued by genetic engineering in E. coli.  相似文献   

14.
Anabaena variabilis ATCC 29413 is a heterotrophic, nitrogen-fixing cyanobacterium containing both a Mo-dependent nitrogenase encoded by the nif genes and V-dependent nitrogenase encoded by the vnf genes. The nifB, nifS, and nifU genes of A. variabilis were cloned, mapped, and partially sequenced. The fdxN gene was between nifB and nifS. Growth and acetylene reduction assays using wild-type and mutant strains indicated that the nifB product (NifB) was required for nitrogen fixation not only by the enzyme encoded by the nif genes but also by the enzyme encoded by the vnf genes. Neither NifS nor NifU was essential for nitrogen fixation in A. variabilis.  相似文献   

15.
Abstract The effect of the nitrogen source on the cellular activity level of assimilatory nitrate reductase in the cyanobacteria Anabaena variabilis (ATCC29413) and Synechocystis sp. (PCC6714) has been examined. In the filamentous N2-fixing A. variabilis , nitrate behaved as a nutritional inducer of nitrate reductase, with ammonium acting (via products of its assimilation) as an antagonist with regard to nitrate. Ammonium-promoted repression of nitrate reductase was also evident in the unicellular non-nitrogen fixer Synechocystis , but in this strain nitrate was not required as an obligatory inducer.  相似文献   

16.
17.
Carbonic anhydrase (CA) activity was detected in homogenatesfrom Anabaena variabilis ATCC 29413, M-2 and M-3, but not inthe suspension of the intact cells. Activity was higher in cellsgrown in ordinary air (low-CO2 cells) than in those grown inair enriched with 2–4% CO2 (high-CO2 cells). Fractionationby centrifugation indicated that the CA from A. variabilis ATCC29413 is soluble, whereas both soluble and insoluble forms existin A. variabilis M-2 and M-3. The addition of dithiothreitoland Mg2 $ greatly decreased the CA activity of A. variabilisATCC 29413. The specific activity of the CA from A. variabilis ATCC 29413was increased ca. 200 times by purification with ammonium sulfate,DEAE-Sephadex A-50 and Sephadex G-100. Major and minor CA peaksin Sephadex G-100 chromatography showed respective molecularweights of 48,000 and 25,000. The molecular weight of the CAdetermined by polyacrylamide disc gel electrophoresis was 42,000?5,000.The activity of CA was inhibited by ethoxyzolamide (I50=2.8?10-9M), acetazolamide (I50=2.5?10-7 M) and sulfanilamide (I50=2.9?10-6M). (Received January 5, 1984; Accepted April 26, 1984)  相似文献   

18.
Three strains of " Agrobacterium sanguineum", an aerobic marine bacterial species described previously, were re-characterized from phylogenetic and taxonomic viewpoints. 16S rDNA sequence comparisons showed that the " A. sanguineum" strains belong to the alpha-4 subgroup of alpha-Proteobacteria, with members of the genera Erythromicrobium and Porphyrobacter as their closest relatives. DNA-DNA hybridization studies indicated that the " A. sanguineum" strains were distinguishable from any previously known species of these genera. Bacteriochlorophyll a, monosaccharide-type glycosphingolipids, 2-OH fatty acids of C14:0, C15:0, C16:0, and C16:1, and ubiquinone-10 were detected in the " A. sanguineum" strains. The G+C of the DNA was 63.8-64.0 mol%. Two of the " A. sanguineum" strains, IAM 12620 (=ATCC 25659) and ATCC 25661, were able to grow with biphenyl and dibenzofuran as sole carbon source in the presence of 0.05% yeast extract. The medium in these cultures turned yellowish-orange at the exponential phase of growth due to the release of soluble chromogenic metabolites. The remaining " A. sanguineum" strain, ATCC 25660, and all test strains of Erythromicrobium and Porphyrobacter neither grew nor produced yellow-orange pigment with biphenyl or dibenzofuran. In PCR experiments, bphA1 gene, coding for the large subunit protein of biphenyl dioxygenase, was detected in " A. sanguineum" IAM 12620 and ATCC 25661. Based on these results, we propose classifying " A. sanguineum" IAM 12620 and ATCC 25661 as a new species of the genus Porphyrobacter with the name Porphyrobacter sanguineus sp. nov.  相似文献   

19.
A crtD (1-HO carotenoid 3,4-dehydrogenase gene) homolog from marine bacterium strain P99-3 included in the gene cluster for the biosynthesis of myxol (3,4-didehydro-1,2-dihydro-β,ψ-carotene-3,1,2-triol) was functionally identified. The P99-3 CrtD was phylogenetically distant from the other CrtDs. A catalytic feature was its high activity for the monocyclic carotenoid conversion: 1-HO-torulene (3,4-didehydro-1,2-dihydro-β,ψ-caroten-1-ol) was prominently formed from 1-HO-γ-carotene (1,2-dihydro-β,ψ-caroten-1-ol) in Escherichia coli with P99-3 CrtD, indicating that this enzyme has been highly adapted to myxol biosynthesis. This unique type of crtD is a valuable tool for obtaining 1-HO-3,4-didehydro monocyclic carotenoids in a heterologous carotenoid production system.  相似文献   

20.
《Phytochemistry》1986,25(5):1127-1132
The sugar moiety bound to myxol in Oscillatoria agardhii was shown by 1H NMR (400 MHz) experiments and glycoside hydrolysis to be α-linked chinovose, tentatively with the L-configuration. Direct comparison of 100 MHz 1H NMR spectra of the acetates of myxol α-chinovoside and of oscillaxanthin ex Arthrospira sp. suggests the same sugar component in oscillaxanthin, and also in myxoxanthophyll from the latter source. The O-methyl methylpentoside bound to myxol in O. bornetii f. tenuis was identified by 1H NMR as α-linked 3-O-methyl-fucose, tentatively L-configurated. The differentiation of species in the genus Oscillatoria, causing natural blooms in eutrophic lakes, was supported by their carotenoid pattern when including the differences in sugar moiety of the carotenoid glycosides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号