首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M Gilly  N R Benson  M Pellegrini 《Biochemistry》1985,24(21):5787-5792
Trichodermin, a eukaryotic-specific antibiotic, inhibits protein synthesis in Drosophila cells. We have synthesized a 14C-labeled bromoacetyl derivative of trichodermin that binds to Drosophila 80S ribosomes and once bound reacts covalently with ribosomal proteins. It does not react with rRNA. Three large-subunit proteins (L1, L3, and L24) and three small-subunit proteins (S3/S5, 2/3S, and S8) are labeled by [14C] (bromoacetyl)trichodermin. Reaction with each of these proteins can be competed by an excess of unmodified trichodermin, indicating that the labeling has occurred from the native binding site of the parent drug. One of the (bromoacetyl)trichodermin-labeled proteins (S8) is also labeled by photoactivated puromycin in the A site. A second protein (S3/S5) is found to be labeled by a P-site affinity reagent. The results suggest that the trichodermin binding site spans both the small and large subunits and portions of both the A and P sites. These data combined with previous studies on the A and P sites of Drosophila ribosomes have allowed us to construct a model of the protein locations in this important active site.  相似文献   

2.
The effects of antibodies specific for the Escherichia coli 30 S and 50 S ribosomal proteins have been determined for in vitro peptide chain termination and two partial reactions, the codon-directed binding of E. coli release factor to the ribosome and peptidyl-tRNA hydrolysis with RF2. Antibodies to ribosomal proteins L7 and L12 inhibit the initial binding of RF to the ribosome, and as a result, the subsequent peptidyl-tRNA hydrolysis. The kinetics of ribosomal inactivation for in vitro termination by anti-L7/L12 indicate that Fab fragments bind to three ribosome sites, and suggest that each of three copies of L7/L12 is involved in the binding of RF to the ribosome. When 70 S ribosome substrates are pretreated with anti-L11 and anti-L16 RF-dependent peptidyl-tRNA, hydrolysis is partially inhibited but the interaction of RF with the ribosome is not affected. The inactivation of in vitro termination by a mixture of anti-L11 and anti-L16 is not co-operative. Pretreatment of the 30 S ribosomal subunit (but not 70 S ribosomal substrate) with antibodies to the 30 S proteins, S9 and S11, results in strong inhibition of codon-directed hydrolysis of peptidyl-tRNA. While these antibodies inhibit ribosome subunit association, a requirement for peptide chain termination, and thereby may inhibit the in vitro termination reactions indirectly, the codon-directed binding of RF is markedly more affected than peptidyl-tRNA hydrolysis by anti-S9 and anti-S11. Antibody to S2 and anti-S3 exhibit a similar but less marked differential effect on the partial reactions of in vitro termination under the same conditions. When dissociated ribosomes are pretreated with anti-L11, in vitro termination is completely inhibited and both codon-directed binding of RF and peptidyl-tRNA hydrolysis are affected. L11 may, therefore, be at or near the interface between the ribosome subunits and like S9 and S11 not completely accessible to antibody in 70 S ribosomes. Pretreatment of dissociated ribosomes with antibodies to a number of other ribosomal proteins (L2, L4, L6, L14, L15, L17, L18, L20, L23, L26, L27) results in partial inhibition of all termination reactions although these antibodies have no effect on termination when incubated with 70 S ribosome substrates. The antibodies probably affect in vitro termination indirectly as a result of either preventing correct ribosome subunit association, or preventing correct positioning of the fMet-tRNA at the ribosome P site.  相似文献   

3.
During the stationary growth phase, Escherichia coli 70S ribosomes are converted to 100S ribosomes, and translational activity is lost. This conversion is caused by the binding of the ribosome modulation factor (RMF) to 70S ribosomes. In order to elucidate the mechanisms by which 100S ribosomes form and translational inactivation occurs, the shape of the 100S ribosome and the RMF ribosomal binding site were investigated by electron microscopy and protein-protein cross-linking, respectively. We show that (i) the 100S ribosome is formed by the dimerization of two 70S ribosomes mediated by face-to-face contacts between their constituent 30S subunits, and (ii) RMF binds near the ribosomal proteins S13, L13, and L2. The positions of these proteins indicate that the RMF binding site is near the peptidyl transferase center or the P site (peptidyl-tRNA binding site). These observations are consistent with the translational inactivation of the ribosome by RMF binding. After the "Recycling" stage, ribosomes can readily proceed to the "Initiation" stage during exponential growth, but during stationary phase, the majority of 70S ribosomes are stored as 100S ribosomes and are translationally inactive. We suggest that this conversion of 70S to 100S ribosomes represents a newly identified stage of the ribosomal cycle in stationary phase cells, and we have termed it the "Hibernation" stage.  相似文献   

4.
A series of peptidyl-tRNA analogs with varying peptide chain length, BrAc(Gly) nPhe-tRNAphe, n = 0 to 16 has been prepared. When bound to Escherichia coli 70 S ribosomes these all react covalently with certain ribosomal proteins. The overwhelming majority of the reaction is with 50 S ribosomal proteins L2, L16, L24, L26–L27 and L32–L33. The extent of reaction with each protein is a function of peptide chain length, making it possible to estimate the relative proximity of these proteins to the 3′-terminus of tRNA bound in the ribosomal P site. This fact, coupled with the findings of others about the length dependence of the binding and peptide donor activity of peptidyl-tRNAs suggests that there is actually a binding site for the growing peptide chain. If this is true, the results presented here permit the ordering of the proteins in this site: L2 is closest to the 3′-end of tRNA followed by L26–L27, L32–L33 and last L24. Evidence is also given that the direction of the growing peptide chain must point away from the A site.  相似文献   

5.
The incubation of the 50 S ribosomal subunit of Escherichia coli with 1.5 M LiCl yields 1.5c core particles inactive in the peptidyl-tRNA hydrolysis activity of in vitro termination. The omission of L16 alone from reconstitutions of the proteins into the core results in inactive ribosomes. The single omission of a number of other proteins, in particular L7/L12, L10, L25, L27, and L15, gives ribosomes with intermediate activity. L16 alone is unable to restore significant activity to 1.5c cores, but together L16 and the above "stimulating" proteins produce particles as active as those reconstituted with the full complement of proteins. The ribosomal proteins important for the expression of peptidyl-tRNA hydrolysis and peptidyl transferase activities are very similar. However, ribosomes lacking both L11 and L16, but not L16 alone, surprisingly can catalyze codon- and release factor 2-dependent peptidyl-tRNA hydrolysis. The addition of L16 dramatically increases the activity. L16 is, therefore, important but not essential for the expression of the release factor 2-dependent peptidyl-tRNA hydrolysis.  相似文献   

6.
The macrolide antibiotics carbomycin A, niddamycin, and tylosin have been radioactively labeled by reducing their aldehyde group at the C-18 position. Dihydro derivatives with specific activities around 2.5 Ci/mmol can be obtained that, although partially affected in their activity, still bind to the ribosomes with high affinity. The presence in the chemical structure of these antibiotics of alpha-beta-unsaturated ketone groups makes them photochemically reactive, and by irradiation above 300 nm, covalent incorporation of the radioactive dihydro derivatives into ribosomes has been achieved. The covalent binding seems to take place at the specific binding sites for macrolides as deduced from binding saturation studies and competition experiments with unmodified drugs. Analysis of the ribosomal components labeled by the drugs indicated that most radioactivity is associated with the proteins L27, L2, and L28 when 50S subunits are labeled, and with L27, L2, L32/33, S9, and S12 in the case of 70S ribosomes. These results agree well with a model of macrolides' mode of action that assumes an interaction of the drug at the peptidyl transferase P site that would block the exit channel for the growing peptide chain.  相似文献   

7.
M Gilly  M Pellegrini 《Biochemistry》1985,24(21):5781-5786
[3H]Puromycin covalently incorporates into the protein and to a much lesser extent into the RNA components of Drosophila ribosomes in the presence of 254-nm light. The photoincorporation reaction takes place with a small number of large- (L2 and L17) and small- (S8 and S22) subunit proteins as determined by two-dimensional gel analysis. More quantitative one-dimensional gel results show that puromycin reacts with each of these proteins in a functional site specific manner. The small percentage of the total labeling that occurs with rRNA also appears to be site specific. The rRNA labeling arises from a puromycin-mediated cross-linking of ribosomal protein and rRNA. Ionic conditions shift the pattern of puromycin-labeled ribosomal proteins. These results suggest that puromycin can occupy two distinct sites on Drosophila 80S ribosomes. The pattern of ribosomal proteins labeled by puromycin is affected by the presence of other antibiotics such as emetine, anisomycin, and trichodermin.  相似文献   

8.
Ribosomal complexes containing elongation factor 2 (EF-2) were formed by incubation of 80 S ribosomes in the presence of EF-2 and the non-hydrolysable GTP analogue GuoPP[CH2]P. The factor was covalently coupled to the ribosomal proteins located at the factor binding site, by treatment with bifunctional reagents. After isolation of the covalent EF-2.ribosomal protein complexes, the proteins were labelled with 125I and the introduced covalent links cleaved. The ribosomal proteins were identified by electrophoresis in two independent two-dimensional gel systems, followed by autoradiography. After cross-linking with bis(hydroxysuccinimidyl) tartrate (4 A between the reactive groups), protein S3/S3a, S7 and S11 were found as the major ribosomal proteins covalently linked to EF-2. The longer reagent, dimethyl 3,8-diaza-4,7-dioxo-5,6-dihydroxydecanbisimidate (11 A between the reactive groups), covalently coupled proteins S7, S11, L5, L13, L21, L23, L26, L27a and L32 to EF-2. After cross-linking with dimethyl suberimidate (9 A between the reactive groups) proteins S3/3a, S7, S11, L5, L8, L13, L21, L23, L26, L27a, L31 and L32 were identified as belonging to the EF-2-binding site. The results indicate that the ribosomal domain interacting with EF-2 is located on both the small and the large ribosomal subunit close to the subunit interface.  相似文献   

9.
J S Hanas  M V Simpson 《Biochemistry》1985,24(25):7303-7309
N-[[(Iodoacetyl)amino]ethyl]-5-naphthylamine-1-sulfonic acid (IAEDANS) is a fluorescent reagent which reacts covalently with the free thiol groups of proteins. When the reagent is reacted with the Escherichia coli ribosome under mild conditions, gel electrophoresis shows modification of predominantly two proteins, S18 and L31', which become labeled to an equal extent. When the native (i.e., untreated) ribosome is dissociated into 30S and 50S subunits, only the 30S ribosomal protein S18 reacts with IAEDANS despite the fact that L31' is still present on the large subunit. Upon heat activation of the subunits, a procedure which alters subunit conformation, S18 plus a number of higher molecular weight proteins is modified, but not L31'; the latter reacts with IAEDANS only in the 70S ribosome or when it is free. In contrast to the relatively stable association of L31' with native or with dissociated ribosomes, dissociation of N-[(acetylamino)ethyl]-5-naphthylaminesulfonic acid (AEDANS)-treated ribosomes weakens the AEDANS-L31'/ribosome interaction, resulting, upon gel filtration analysis, in ribosomes devoid of this derivatized protein.  相似文献   

10.
The 3'-terminal -A-C-C-A sequence of yeast tRNA(Phe) has been modified by replacing either adenosine-73 or adenosine-76 with the photoreactive analogue 8-azidoadenosine (8N3A). The incorporation of 8N3A into tRNA(Phe) was accomplished by ligation of 8-azidoadenosine 3',5'-bisphosphate to the 3' end of tRNA molecules which were shortened by either one or four nucleotides. Replacement of the 3'-terminal A76 with 8N3A completely blocked aminoacylation of the tRNA. In contrast, the replacement of A73 with 8N3A has virtually no effect on the aminoacylation of tRNA(Phe). Neither substitution hindered binding of the modified tRNAs to Escherichia coli ribosomes in the presence of poly(U). Photoreactive tRNA derivatives bound noncovalently to the ribosomal P site were cross-linked to the 50S subunit upon irradiation at 300 nm. Nonaminoacylated tRNA(Phe) containing 8N3A at either position 73 or position 76 cross-linked exclusively to protein L27. When N-acetylphenylalanyl-tRNA(Phe) containing 8N3A at position 73 was bound to the P site and irradiated, 23S rRNA was the main ribosomal component labeled, while smaller amounts of the tRNA were cross-linked to proteins L27 and L2. Differences in the labeling pattern of nonaminoacylated and aminoacylated tRNA(Phe) containing 8N3A in position 73 suggest that the aminoacyl moiety may play an important role in the proper positioning of the 3' end of tRNA in the ribosomal P site. More generally, the results demonstrate the utility of 8N3A-substituted tRNA probes for the specific labeling of ribosomal components at the peptidyltransferase center.  相似文献   

11.
Summary We have identified proteins involved in the peptidyl-tRNA-binding site of rat liver ribosomes, using an affinity label designed specifically to probe the P-site in eukaryotic peptidyl transferase. The label is a 3-terminal pentanucleotide fragment of N-acetylleucyl-tRNA in which mercury atoms have been added at the C-5 position of the three cytosine residues. This mercurated fragment can bind to rat liver peptidyl transferase and function as a donor of N-acetylleucine to puromycin. Concommitant with this binding, the mercury atoms present in the fragment can form a covalent linkage with a small number of ribosomal proteins. The major proteins labeled by this reagent are L5 and L36A. Four protein spots are found labeled to a lesser extent: L10, L7/7a, L3/4 and L25/31. Each of these proteins, therefore, is implicated in the binding of the 3-terminus of peptidyl-tRNA.The results presented here are correlated with other investigations of the structure-function aspects of rat liver peptidyl transferase. Using these data, we have constructed a model for the arrangement of proteins within this active site.  相似文献   

12.
Photoreactive derivatives of yeast tRNA(Phe) containing 2-azidoadenosine at their 3' termini were used to trace the movement of tRNA across the 50S subunit during its transit from the P site to the E site of the 70S ribosome. When bound to the P site of poly(U)-programmed ribosomes, deacylated tRNA(Phe), Phe-tRNA(Phe) and N-acetyl-Phe-tRNA(Phe) probes labeled protein L27 and two main sites within domain V of the 23S RNA. In contrast, deacylated tRNA(Phe) bound to the E site in the presence of poly(U) labeled protein L33 and a single site within domain V of the 23S rRNA. In the absence of poly(U), the deacylated tRNA(Phe) probe also labeled protein L1. Cross-linking experiments with vacant 70S ribosomes revealed that deacylated tRNA enters the P site through the E site, progressively labeling proteins L1, L33 and, finally, L27. In the course of this process, tRNA passes through the intermediate P/E binding state. These findings suggest that the transit of tRNA from the P site to the E site involves the same interactions, but in reverse order. Moreover, our results indicate that the final release of deacylated tRNA from the ribosome is mediated by the F site, for which protein L1 serves as a marker. The results also show that the precise placement of the acceptor end of tRNA on the 50S subunit at the P and E sites is influenced in subtle ways both by the presence of aminoacyl or peptidyl moieties and, more surprisingly, by the environment of the anticodon on the 30S subunit.  相似文献   

13.
Results are presented to prove that bromoacetyl-phenylalanyl-transfer RNA reacts covalently with 50 S ribosomal proteins L2 and L27 while it is bound correctly to the peptidyl site on the 70 S ribosome. Attachment of the BrAcPhe moiety to tRNA causes a 100-fold enhancement of its reactivity with ribosomes. This reactivity closely parallels binding of tRNA whether measured by poly(U) stimulation or competition with deacylated tRNA. BrAcPhe-tRNA can bind correctly to the P site as judged by puromycin releasibility and lack of tetracycline inhibition. Little significant reaction of BrAcPhe-tRNA with L2 and L27 occurs during procedures used to purify and analyze ribosomal proteins. If ribosomes are first incubated with BrAcPhe-tRNA and subsequently treated with puromycin before analysis, little inhibition of the covalent reaction with L2 and L27 is observed. In contrast, a few minor reaction products are markedly suppressed. Covalently attached BrAcPhe-tRNA is still capable of accepting an amino acid from Phe-tRNA or puromycin. The products from this reaction are found attached to proteins L2 and L27 and to a lesser extent to L15 and L16. This shows that true affinity labeling of proteins in the peptidyl binding site has been accomplished.Some covalent reaction of BrAcPhe-tRNA with the 30 S protein S18 is also observed. This reaction is not poly(U)-dependent, however, and S18-reacted BrAcPhe-tRNA is not capable of peptide bond formation with Phe-tRNA. It seems likely that reaction with S18 results from a non-functional interaction of the affinity label with the ribosome.  相似文献   

14.
The antitumoral and antibacterial drug pactamycin can be radioactively labeled by iodination without loss of biological activity. Using the labeled pactamycin, the ribosomal binding site of the drug on rat liver ribosomes has been studied by affinity labeling techniques taking advantage of the photoreactive acetophenone group present in the molecule. When 40 S ribosomal subunits are labeled, one major spot of radioactivity is found associated to protein S25. In addition, weaker spots related to proteins S14/15, S10, S17 and S7 can also be detected in the autoradiogram of the two-dimensional gel slab. Since pactamycin inhibits protein synthesis initiation, the proteins forming its binding site must be related to some step of this process. By comparison with results from pactamycin affinity labeling of Escherichia coli ribosomes (Tejedor, F., Amils, R. and Ballesta, J.P.G. (1985) Biochemistry 24, 3667-3672) these proteins could lie in the mRNA and initiation factors binding region of the rat liver ribosome.  相似文献   

15.
Treatment of Escherichia coli ribosomes with the protein reagent 2,3-dimethylmaleic anhydride is accompanied by inactivation of polypeptide polymerization and by dissociation of ribosomal proteins. Regeneration of the modified amino groups at pH 6.0 is followed by reactivation and reconstitution of the ribosomes. Prior to regeneration of the amino groups, ribosomal particles and split proteins can be separated by centrifugation, which allows the preparation of new protein-deficient particles. The ribosomal particles obtained by three successive treatments with 2,3-dimethyl-maleic anhydride at a molar ratio of reagent to ribosome equal to 16,000 lack proteins S1, S2, S3, S5, S10, S13, S14, L7, L8, L10, L11, L12, and L20 and have lost part of proteins S4, L1, L6, L16, and L25. This new procedure to obtain protein-deficient ribosomal particles is mild and might be useful to dissociate other protein-containing structures in addition to ribosomes.  相似文献   

16.
Free- and EF-2-bound 80 S ribosomes, within the high-affinity complex with the non-hydrolysable GTP analog: guanylylmethylenediphosphonate (GuoPP(CH2)P), and the low-affinity complex with GDP, were treated with trypsin under conditions that modified neither their protein synthesis ability nor their sedimentation constant nor the bound EF-2 itself. Proteins extracted from trypsin-digested ribosomes were unambiguously identified using three different two-dimensional gel electrophoresis systems and 5 S RNA release was checked by submitting directly free- and EF-2-bound 80 S ribosomes, incubated with trypsin, to two-dimensional gel electrophoresis. Our results indicate that the binding of (EF-2)-GuoPP[CH2]P to 80 S ribosomes modified the behavior of a cluster of five proteins which were trypsin-resistant within free 80 S ribosomes and trypsin-sensitive within the high-affinity complex (proteins: L3, L10, L13a, L26, L27a). As for the binding of (EF-2)-GDP to 80 S ribosomes, it induced an intermediate conformational change of ribosomes, unshielding only protein L13a and L27a. Quantitative release of free intact 5 S RNA which occurred in the first case but not in the second one, should be related to the trypsinolysis of protein(s) L3 and/or L10 and/or L26. Results were discussed in relation to structural and functional data available on the ribosomal proteins we found to be modified by EF-2 binding.  相似文献   

17.
Number of tRNA binding sites on 80 S ribosomes and their subunits   总被引:1,自引:0,他引:1  
The ability of rabbit liver ribosomes and their subunits to form complexes with different forms of tRNAPhe (aminoacyl-, peptidyl- and deacylated) was studied using the nitrocellulose membrane filtration technique. The 80 S ribosomes were shown to have two binding sites for aminoacyl- or peptidyl-tRNA and three binding sites for deacylated tRNA. The number of tRNA binding sites on 80 S ribosomes or 40 S subunits is constant at different Mg2+ concentrations (5-20 mM). Double reciprocal or Scatchard plot analysis indicates that the binding of Ac-Phe-tRNAPhe to the ribosomal sites is a cooperative process. The third site on the 80 S ribosome is formed by its 60 S subunit, which was shown to have one codon-independent binding site specific for deacylated tRNA.  相似文献   

18.
Periodate-oxidized tRNA (tRNAox), the 2′,3′-dialdehyde derivative of tRNA, was used as a zero-length active site-directed affinity labeling reagent, to covalently label proteins at the binding site for the 3′-end of tRNA on human 80S ribosomes. When human 80S ribosomes were reacted with tRNAAspox positioned at the P-site, in the presence of an appropriate 12 mer mRNA, a set of two tRNAox-labeled ribosomal proteins (rPs) was observed. The majorily labeled protein was identified as the large subunit rP L36a-like (RPL36AL) by means of mass spectrometry. Intact tRNAAsp competed with tRNAAspox for the binding to the P-site, by preventing tRNA-protein cross-linking with RPL36AL. Altogether, the data presented in this report are consistent with the presence of RPL36AL at or near the binding site for the CCA end of the tRNA substrate positioned at the P-site of human 80S ribosomes. It is the first time that a ribosomal protein is found in an intimate contact (i.e. at a zero-distance) with a nucleotide of the conserved CCA terminus of P-site tRNA which is the substrate of peptidyl transferase reaction. RPL36AL which is strongly conserved in eukaryotes belongs to the L44e family of rPs, a representative of which is Haloarcula marismortui RPL44e.  相似文献   

19.
Affinity labeling of the virginiamycin S binding site on bacterial ribosome   总被引:1,自引:0,他引:1  
Virginiamycin S (VS, a type B synergimycin) inhibits peptide bond synthesis in vitro and in vivo. The attachment of virginiamycin S to the large ribosomal subunit (50S) is competitively inhibited by erythromycin (Ery, a macrolide) and enhanced by virginiamycin M (VM, a type A synergimycin). We have previously shown, by fluorescence energy transfer measurements, that virginiamycin S binds at the base of the central protuberance of 50S, the putative location of peptidyltransferase domain [Di Giambattista et al. (1986) Biochemistry 25, 3540-3547]. In the present work, the ribosomal protein components at the virginiamycin S binding site were affinity labeled by the N-hydroxysuccinimide ester derivative (HSE) of this antibiotic. Evidence has been provided for (a) the association constant of HSE-ribosome complex formation being similar to that of native virginiamycin S, (b) HSE binding to ribosomes being antagonized by erythromycin and enhanced by virginiamycin M, and (c) a specific linkage of HSE with a single region of 50S, with virtually no fixation to 30S. After dissociation of covalent ribosome-HSE complexes, the resulting ribosomal proteins have been fractionated by electrophoresis and blotted to nitrocellulose, and the HSE-binding proteins have been detected by an immunoenzymometric procedure. More than 80% of label was present within a double spot corresponding to proteins L18 and L22, whose Rfs were modified by the affinity-labeling reagent. It is concluded that these proteins are components of the peptidyltransferase domain of bacterial ribosomes, for which a topographical model, including the available literature data, is proposed.  相似文献   

20.
70S ribosomes from Escherichia coli, selectively spin labeled on the SH groups of proteins S18, S12, S21, S17, and L27, were used to study the formation of the tertiary complex ribosome-poly(U)-tRNAPhe. Most of these ribosomal proteins are located in the region of binding of tRNA. The electron paramagnetic resonance observable structural change suggests a loosening of the ribosome structure upon binding of the tRNA molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号