首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our objective was to test whether or not cyclization recombination (CRE), the P1 phage site-specific recombinase, induces genome rearrangements in plastids. Testing was carried out in tobacco plants in which a DNA sequence, located between two inversely oriented locus of X-over of P1 (loxP) sites, underwent repeated cycles of inversions as a means of monitoring CRE activity. We report here that CRE mediates deletions between loxP sites and plastid DNA sequences in the 3'rps12 gene leader (lox-rps12) or in the psbA promoter core (lox-psbA). We also observed deletions between two directly oriented lox-psbA sites, but not between lox-rps12 sites. Deletion via duplicated rRNA operon promoter (Prrn) sequences was also frequent in CRE-active plants. However, CRE-mediated recombination is probably not directly involved, as no recombination junction between loxP and Prrn could be observed. Tobacco plants carrying deleted genomes as a minor fraction of the plastid genome population were fertile and phenotypically normal, suggesting that the absence of deleted genome segments was compensated by gene expression from wild-type copies. The deleted plastid genomes disappeared in the seed progeny lacking CRE. Observed plastid genome rearrangements are specific to engineered plastid genomes, which contain at least one loxP site or duplicated psbA promoter sequences. The wild-type plastid genome is expected to be stable, even if CRE is present in the plastid.  相似文献   

2.
The Cre recombinase efficiently causes site-specific DNA recombination at loxP sites placed into the eukaryotic genome. Since the loxP site of phage P1 is 34 base-pairs in size, the natural occurrence of this exact sequence is unlikely in any eukaryotic genome. However, related sequences may exist in eukaryotic genomes that could recombine at low efficiency with an authentic loxP site. This work identifies such cryptic lox sites in the yeast genome using a positive selection procedure that allows the detection of events occurring at a frequency of less than 1 x 10(-7). The selection is based on the disruption/reconstruction of the yeast gene YGL022. Disruption of YGL022 confers multiple drug sensitivity. Recombination events at a loxP site 5' to the structural gene restore expression of YGL022 and result in a multiple drug resistant phenotype. These drug resistant mutants all display chromosomal rearrangements resulting from low-frequency Cre-mediated recombination with an endogenous cryptic lox site. Ten such sites have been found and they have been mapped physically to a number of different yeast chromosomes. Although the efficiency of Cre-mediated recombination between loxP and such endogenous sites is quite low, it may be possible to redesign recombination substrates to improve recombination efficiency. Because of the greater complexity of the human and mouse genomes compared with yeast, an analogous situation is likely to exist in these organisms. The availability of such sites would be quite useful in the development of alternative strategies for gene therapy and in the generation of transgenic animals.  相似文献   

3.
S Brecht  H Erdhart  M Soete  D Soldati 《Gene》1999,234(2):239-247
Site-specific DNA recombinases from bacteriophage and yeasts have been developed as novel tools for genome engineering both in prokaryotes and eukaryotes. The 38kDa Cre protein efficiently produces both inter- and intramolecular recombination between specific 34bp sites called loxP. We report here the in vivo use of Cre recombinase to manipulate the genome of the protozoan parasite Toxoplasma gondii. Cre catalyzes the precise removal of transgenes from T. gondii genome when flanked by two directly repeated loxP sites. The efficiency of excision has been determined using LacZ as reporter and indicates that it can easily be applied to the removal of undesired sequences such as selectable marker genes and to the determination of gene essentiality. We have also shown that the reversibility of the recombination reaction catalyzed by Cre offers the possibility to target site-specific integration of a loxP-containing vector in a chromosomally placed loxP target in the parasite. In mammalian systems, the Cre recombinase can be regulated by hormone and is used for inducible gene targeting. In T. gondii, fusions between Cre recombinase and the hormone-binding domain of steroids are constitutively active, hampering the utilization of this mode of post-translational regulation as inducible gene expression system.  相似文献   

4.
The bacteriophage P1 Cre recombinase catalyzes site-specific recombination between 34-base-pair loxP sequences in a variety of topological contexts. This reaction is widely used to manipulate DNA molecules in applications ranging from benchtop cloning to genome modifications in transgenic animals. Despite the simple, highly symmetric nature of the Cre-loxP system, there is strong evidence that the reaction is asymmetric; the 'bottom' strands in the recombining loxP sites are preferentially exchanged before the 'top' strands. Here, we address the mechanistic basis for ordered strand exchange in the Cre-loxP recombination pathway. Using suicide substrates containing 5'-bridging phosphorothioate linkages at both cleavage sites, fluorescence resonance energy transfer between synapsed loxP sites and a Cre mutant that can cleave the bridging phosphorothioate linkage but not a normal phosphodiester linkage, we showed that preferential formation of a specific synaptic complex between loxP sites imposes ordered strand exchange during recombination and that synapsis stimulates cleavage of loxP sites.  相似文献   

5.
Cyclooxygenase-2 (Cox-2) modulates many normal functions, and appears to play a role in a wide variety of pathophysiologic conditions. Cox-2 gene expression is induced in many different cell types, in response to many distinct stimuli. We generated a conditional knockout mouse in which critical exons of the Cox-2 gene are flanked with loxP sites. Cox-2(flox/flox) mice appear normal and are fertile. Recombination at the loxP sites, loss of Cox-2 protein expression, and prevention of induced PGE2 accumulation are observed in Cox-2(flox/flox) mouse embryo fibroblasts following infection with an adenovirus expressing CRE recombinase. In vivo recombination at the Cox-2(flox) allele was demonstrated in the liver of Cox-2(flox/flox) mice following intravenous injection of adenovirus expressing CRE recombinase. Spatially and temporally restricted elimination of the Cox-2 gene in Cox-2(flox/flox) conditional knockout mice should provide a valuable tool to analyze the cell type-specific role of Cox-2 in many disease models.  相似文献   

6.
Retroviral gene transfer is widely used in experimental and human gene therapy applications. We have devised a novel method of generating high-titer retroviral producer cell lines based on the P1 bacteriophage recombinase system Cre-loxP. Incorporation of loxP sites flanking a Neo(r)-SVTK cassette in the proviral DNA allows excision of these selectable markers through expression of Cre recombinase after production of a high-titer producer cell line. The resultant producer line contains a single loxP site flanked by the viral long terminal repeats. Retransfection of this line with the Cre expression vector and a plasmid containing a gene of interest flanked by loxP sites allows insertional recombination of the gene into the favorable preexisting site in the genome and the generation of a new line with a titer equivalent to that of the parental producer cell line. The efficiency of the process is sufficient to allow the generation of multiple new producer lines without the addition of antibiotic resistance genes. We have successfully generated retroviral vectors carrying different genes by using this approach and discuss the potential applications of this method in gene therapy.  相似文献   

7.
The feasibility of using technologies based on site-specific recombination in actinomycetes was shown several years ago. Despite their huge potential, these technologies mostly have been used for simple marker removal from a chromosome. In this paper, we present different site-specific recombination strategies for genome engineering in several actinomycetes belonging to the genera Streptomyces, Micromonospora, and Saccharothrix. Two different systems based on Cre/loxP and Dre/rox have been utilized for numerous applications. The activity of the Cre recombinase on the heterospecific loxLE and loxRE sites was similar to its activity on wild-type loxP sites. Moreover, an apramycin resistance marker flanked by the loxLERE sites was eliminated from the Streptomyces coelicolor M145 genome at a surprisingly high frequency (80%) compared to other bacteria. A synthetic gene encoding the Dre recombinase was constructed and successfully expressed in actinomycetes. We developed a marker-free expression method based on the combination of phage integration systems and site-specific recombinases. The Cre recombinase has been used in the deletion of huge genomic regions, including the phenalinolactone, monensin, and lipomycin biosynthetic gene clusters from Streptomyces sp. strain Tü6071, Streptomyces cinnamonensis A519, and Streptomyces aureofaciens Tü117, respectively. Finally, we also demonstrated the site-specific integration of plasmid and cosmid DNA into the chromosome of actinomycetes catalyzed by the Cre recombinase. We anticipate that the strategies presented here will be used extensively to study the genetics of actinomycetes.  相似文献   

8.
The site-specific recombinase Cre must employ control mechanisms to impose directionality on recombination. When two recombination sites (locus of crossing over in phage P1, loxP) are placed as direct repeats on the same DNA molecule, collision between loxP-bound Cre dimers leads to excision of intervening DNA. If two sites are placed as inverted repeats, the intervening segment is flipped around. Cre catalyzes these reactions in the absence of protein co-factors. Current models suggest that directionality is controlled at two steps in the recombination pathway: the juxtaposition of loxP sites and the single-strand-transfer reactions within the synaptic complex. Here, we show that in Escherichia coli strain 294-Cre, directionality for recombination is altered when the expression of Cre is increased. This leads to deletion instead of inversion on substrates carrying two loxP sites as inverted repeats. The nucleotide sequence composition of loxP sites remaining in aberrant products indicates that site alignment and/or DNA strand transfer in the in vivo Cre-loxP recombination pathway are not always tightly controlled.  相似文献   

9.
We constructed an expression vector of Flp recombinase modified by adding a nuclear localization signal. Injection of the expression vector into fertilized eggs of the C57BL/6 strain yielded transgenic mouse lines expressing the Flp recombinase transgene in the testis. We crossed the transgenic mice to reporter mice carrying the neomycin phosphotransferase gene flanked by target sites of Flp recombinase. Examination of the deletion of the neomycin phosphotransferase gene in the progeny showed that Flp-mediated recombination took place efficiently in vivo in FLP66 transgenic mouse line. These results suggest that the Flp recombinase system is effective in mice and in combination with the Cre recombinase system extends the potentials of gene manipulation in mice. One of the useful applications of FLP66 transgenic mouse line is the removal of marker genes from mice manipulated for the conditional gene targeting with the Cre/loxP system in the pure C57BL/6 genetic background.  相似文献   

10.
Mlynárová L  Libantová J  Vrba L  Nap JP 《Gene》2002,296(1-2):129-137
Heterospecific lox sites are mutated lox sites that in the presence of Cre recombinase recombine with themselves but not or much less with wildtype loxP. We here show that in Escherichia coli both lox511 and lox2272 sites become highly promiscuous with respect to loxP when in the presence of Cre one of the recombination partners is present in a larger stretch of an inverted repeat of non-lox DNA. In such a palindromic DNA configuration, also the occurrence of other DNA repeat-mediated recombination events is somewhat increased in the presence of Cre. The results indicate that in recombinase mediated cassette exchange or other double lox applications based on the exclusivity of heterospecific lox sites, or in research combining Cre-lox approaches with hairpin RNA for gene silencing, the presence of duplicated DNA around lox sites has to be taken into account. It is proposed that the presence of palindromic non-lox DNA interferes with the homology search of the Cre enzyme prior to the actual recombination event.  相似文献   

11.
We investigated whether complex T-DNA loci, often resulting in low transgene expression, can be resolved efficiently into single copies by CRE/loxP-mediated recombination. An SB-loxP T-DNA, containing two invertedly oriented loxP sequences located inside and immediately adjacent to the T-DNA border ends, was constructed. Regardless of the orientation and number of SB-loxP-derived T-DNAs integrated at one locus, recombination between the outermost loxP sequences in direct orientation should resolve multiple copies into a single T-DNA copy. Seven transformants with a complex SB-loxP locus were crossed with a CRE-expressing plant. In three hybrids, the complex T-DNA locus was reduced efficiently to a single-copy locus. Upon segregation of the CRE recombinase gene, only the simplified T-DNA locus was found in the progeny, demonstrating DNA had been excised efficiently in the progenitor cells of the gametes. In the two transformants with an inverted T-DNA repeat, the T-DNA resolution was accompanied by at least a 10-fold enhanced transgene expression. Therefore, the resolution of complex loci to a single-copy T-DNA insert by the CRE/loxP recombination system can become a valuable method for the production of elite transgenic Arabidopsis thaliana plants that are less prone to gene silencing.  相似文献   

12.
Cre重组酶结构与功能的研究进展   总被引:1,自引:0,他引:1  
Cre/loxP定位重组系统来源于噬菌体P1,由Cre重组酶和loxP位点两部分组成。在Cre重组酶的介导下,设定的DNA片段可以被切除,可以发生倒位,亦可造成定点的整合。由于其作用方式高效简单,Cre/loxP定位重组系统已在特定基因的删除、基因功能的鉴定、外源基因的整合、基因捕获及染色体工程等方面得到了有效的利用,在转基因的酵母、植物、昆虫、哺乳动物的体内外DNA重组方面成为一个有力的工具。这里就Cre重组酶的结构、功能及该定位重组系统的应用等方面的研究进行了综述。  相似文献   

13.
Site- and time-specific gene targeting in the mouse   总被引:25,自引:0,他引:25  
The efficient introduction of somatic mutations in a given gene, at a given time, in a specific cell type, will facilitate studies of gene function and the generation of animal models for human diseases. We have established a conditional site-specific recombination system in mice using a new version of the Cre/lox system. The Cre recombinase has been fused to a mutated ligand binding domain of the human estrogen receptor (ER), resulting in a tamoxifen-dependent Cre recombinase, Cre-ER(T), that is activated by tamoxifen, but not by estradiol. Transgenic mice were generated expressing Cre-ER(T) under the control of a cytomegalovirus promoter. Administration of tamoxifen to these transgenic mice induced excision of a chromosomally integrated gene flanked by loxP sites in a number of tissues, whereas no excision could be detected in untreated animals. However, the efficiency of excision varied between tissues, and the highest level (approximately 40%) was obtained in the skin. To determine the efficiency of excision mediated by Cre-ER(T) in a given cell type, Cre-ER(T)-expressing mice were crossed with reporter mice in which expression of Escherichia coli beta-galactosidase can be induced through Cre-mediated recombination. The efficiency and kinetics of this recombination were analyzed at the cellular level in the epidermis of 6- to 8-week-old double transgenic mice. Site-specific excision occurred within a few days of tamoxifen treatment in essentially all epidermis cells expressing Cre-ER(T). These results indicate that cell-specific expression of Cre-ER(T) in transgenic mice can be used for efficient tamoxifen-dependent Cre-mediated recombination at loci containing loxP sites, to generate site-specific somatic mutations in a spatiotemporally controlled manner. This conditional site-specific recombination system should allow the analysis of knockout phenotypes that cannot be addressed by conventional gene targeting.  相似文献   

14.
DNA site-specific recombination by Cre/loxP is a powerful tool for gene manipulation in experimental animals. VCre/VloxP and SCre/SloxP are novel site-specific recombination systems, consisting of a recombinase and its specific recognition sequences, which function in a manner similar to Cre/loxP. Previous reports using Escherichia coli and Oryzias latipes demonstrated the existence of stringent specificity between each recombinase and its target sites; VCre/VloxP, SCre/SloxP, and Cre/loxP have no cross-reactivity with each other. In this study, we established four novel knock-in (KI) mouse strains in which VloxP-EGFP, SloxP-tdTomato, CAG-VCre, and CAG-SCre genes were inserted into the ROSA26 locus. VloxP-EGFP and SloxP-tdTomato KI mice were reporter mice carrying EGFP or tdTomato genes posterior to the stop codon, which was floxed by VloxP or SloxP fragments, respectively. CAG-VCre and CAG-SCre KI mice carried VCre or SCre genes that were expressed ubiquitously. These two reporter mice were crossed with three different deleter mice, CAG-VCre KI, CAG-SCre KI, and Cre-expressing transgenic mice. Through these matings, we found that VCre/VloxP and SCre/SloxP systems were functional in mice similar to Cre/loxP, and that the recombinases showed tight specificity for their recognition sequences. Our results suggest that these novel recombination systems allow highly sophisticated genome manipulations and will be useful for tracing the fates of multiple cell lineages or elucidating complex spatiotemporal regulations of gene expression.  相似文献   

15.
S Gagneten  Y Le  J Miller    B Sauer 《Nucleic acids research》1997,25(16):3326-3331
The Cre DNA recombinase of bacteriophage P1 has become a useful tool for precise genomic manipulation in embryonic stem (ES) cells that have been gene modified by homologous recombination. We have re-engineered the cre gene to allow ready identification of living Cre+cells by constructing a functional fusion between Cre and an enhanced green fluorescent protein from Aequorea victoria (GFPS65T). The GFP cre fusion gene product rapidly targeted the nucleus in the absence of any exogenous nuclear localization signal. Moreover, GFPCre catalyzed efficient DNA recombination in both a mouse 3T3 derivative cell line and in murine ES cells. Fluorescence- activated cell sorting (FACS) of transiently GFP cre -transfected ES cells not only allowed rapid and efficient isolation of Cre+cells after DNA transfection but also demonstrated that a burst of Cre expression is sufficient to commit cells to Cre-mediated 'pop-out' of loxP -tagged DNA from the genome. Thus, GFP cre allows rapid identification of living cells in which loxP - flanked DNA sequences are destined to be removed from the genome by Cre-mediated recombination without reliance on recombinational activation or inactivation of a marker gene at the target locus. In addition, the GFP cre fusion gene will prove useful in tracing tissue-specific Cre expression in transgenic animals, thereby facilitating the generation and analysis of conditional gene knockout mice.  相似文献   

16.
The cre/loxP recombination system is a valuable tool used to generate tissue specific genomic rearrangements in mouse models. The deletion of a region of interest flanked by two loxP sites is accomplished by the recombinase (cre) enzyme, which binds to the inverted repeat segments of two loxP sites and recognition of a conserved TA sequence in the asymmetric central spacer region “ATAACTTCGTATA ‐NNNTANNN‐TATACGAAGTTAT. In vivo, we found that a single T to C mutation at position 4 of the central spacer region in the distal (3′) loxP site, completely inhibited the recombination reaction in two conditional mouse models. These mice were generated using a mitochondrial methionyl‐tRNA formyltransferase (Mtfmt) gene targeted construct and cre transgene under the control of tissue‐specific promoters: calcium/calmodulin‐dependent kinase II alpha (Camk2a‐cre) and myosin light polypeptide 1 (Myl1‐cre). Surprisingly, transient transfection of a plasmid expressing cre in dermal fibroblasts derived from the same mutant floxed Mtfmt(loxP/loxP) mice line, successfully deleted the region of interest. This study demonstrates the sequence specificity required in vivo, the possibility of bypassing this limitation by expressing high levels of cre recombinase ex vivo and raises concerns related to the quality control of large scale production of gene targeted constructs and mice. genesis 53:695–700, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

17.
We have constructed replication-defective human adenovirus (Ad) type 5 vectors containing the gene for the Cre recombinase from bacteriophage P1 under control of the human cytomegalovirus immediate-early promoter (AdCre). Expression of the protein was detected in replication-permissive (293) and in nonpermissive (MRC5) cell lines, and its biochemical activity was demonstrated in a cell-free recombination assay using a plasmid containing two loxP sites. To study Cre-mediated recombination in an intracellular system, we constructed an Ad vector (AdMA19) containing the luciferase cDNA under control of the human cytomegalovirus promoter but separated from it by an extraneous spacer sequence flanked by loxP sites which blocked luciferase expression. Upon coinfection of 293 or MRC5 cells with AdMA19 and AdCre, luciferase expression was specifically induced by Cre-mediated excision of the intervening sequence. The use of Ad vectors combined with the Cre-loxP system for regulation of gene expression and other possible applications is discussed.  相似文献   

18.
We have used a new genetic strategy based on the Cre-loxP recombination system to generate large chromosomal rearrangements in Lactococcus lactis. Two loxP sites were sequentially integrated in inverse order into the chromosome either at random locations by transposition or at fixed points by homologous recombination. The recombination between the two chromosomal loxP sites was highly efficient (approximately 1 x 10(-1)/cell) when the Cre recombinase was provided in trans, and parental- or inverted-type chromosomal structures were isolated after removal of the Cre recombinase. The usefulness of this approach was demonstrated by creating three large inversions of 500, 1,115, and 1,160 kb in size that modified the lactococcal genome organization to different extents. The Cre-loxP recombination system described can potentially be used for other gram-positive bacteria without further modification.  相似文献   

19.
For genetic transformation of plants, floral dip with Agrobacterium often results in integration of multiple T-DNA copies at a single locus and frequently in low and unstable transgene expression. To obtain efficient single-copy T-DNA transformants, two CRE/ loxP recombinase-based simplifying strategies for complex T-DNA loci were compared. A T-DNA vector with oppositely oriented loxP sites was transformed into CRE -expressing and wild-type control Arabidopsis thaliana plants. Of the primary CRE -expressing transformants, 55% harboured a single copy of the introduced T-DNA, but only 15% in the wild-type plants. However, 73% of the single-copy transformants in the CRE background showed continuous somatic inversion of the DNA segment between the two loxP sites. To avoid inversion of the loxP -flanked T-DNA segment, two T-DNA vectors harbouring only one loxP site were investigated for their suitability for CRE/ loxP recombinase-mediated resolution upon floral-dip transformation into CRE -expressing plants. On average, 70% of the transformants in the CRE background were single-copy transformants, whereas the single-copy T-DNA frequency was only 11% for both vectors in the wild-type background. Both resolution strategies yielded mostly Cre transformants in which the 35S-driven transgene expression was stable and uniform in the progeny and remarkably, also in Cre transformants with multiple T-DNA copies. Therefore, a role is proposed for the CRE recombinase in preventing inverted T-DNA repeat formation or modifying the locus chromatin structure, resulting in a reduced sensitivity for silencing.  相似文献   

20.
V B Rao  V Thaker  L W Black 《Gene》1992,113(1):25-33
Recombinant plasmid DNAs containing long DNA inserts that can be propagated in Escherichia coli would be useful in the analysis of complex genomes. We tested a bacteriophage T4 in vitro DNA packaging system that has the capacity to package about 170 kb of DNA into its capsid for cloning long DNA fragments. We first asked whether the T4 in vitro system can package foreign DNA such as concatemerized lambda imm434 DNA and phage P1-pBR322 hybrid DNA. The data suggest that the T4 system can package foreign DNA as efficiently as the mature phage T4 DNA. We then tested the system for its ability to clone foreign DNA fragments using the P1-pBR322 hybrid vectors constructed by Sternberg [Proc. Natl. Acad. Sci. USA 87 (1990) 103-107]. E. coli genomic DNA fragments were ligated with the P1 vectors containing two directly oriented loxP sites, and the ligated DNA was packaged by the T4 in vitro system. The packaged DNA was then transduced into E. coli expressing the phage P1 cyclization recombination protein recombinase to circularize the DNA by recombination between the loxP sites situated at the ends of the transduced DNA molecule. Clones with long DNA inserts were obtained by using this approach, and these were maintained as single-copy plasmids under the control of the P1 plasmid replicon. Clones with up to about 122-kb size inserts were recovered using this approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号