首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human platelet glycoprotein Ib (GP Ib) is a major integral membrane protein that has been identified as the platelet-binding site mediating the factor VIII/von Willebrand-factor-dependent adhesion of platelets to vascular subendothelium. Recent evidence suggests that GP Ib is normally complexed with another platelet membrane protein, GP IX. In this study, human platelet plasma membranes were selectively solubilized with a buffer containing 0.1% (v/v) Triton X-100. The GP Ib complex (GP Ib plus GP IX) was purified to homogeneity in approximately 30% yield by immunoaffinity chromatography of the membrane extract using the anti-(glycoprotein Ib complex) murine monoclonal antibody, WM 23, coupled to agarose. GP Ib and GP IX were subsequently isolated as purified components by immunoaffinity chromatography of the GP Ib complex using a second anti-(glycoprotein Ib complex) monoclonal antibody, FMC 25, coupled to agarose. As assessed by dodecyl sulphate/polyacrylamide gel electrophoresis, purified GP Ib was identical to the molecule on intact platelets and had an apparent relative molecular mass of 170 000 under nonreducing conditions and 135 000 (alpha subunit) and 25 000 (beta subunit) under reducing conditions. GP IX had an apparent Mr of 22 000 under both nonreducing and reducing conditions. Purified Gb Ib complex and GP Ib inhibited the ristocetin-mediated, human factor VIII/von Willebrand-factor-dependent and bovine factor VIII/von Willebrand-factor-dependent agglutination of washed human platelets suggesting the proteins had been isolated in functionally active form. GP Ib alpha had a similar amino acid composition to that previously reported for its proteolytic degradation product, glycocalicin. The amino acid compositions of GP Ib beta and GP IX were similar but showed marked differences in the levels of glutamic acid, alanine, histidine and arginine. The N-termini of GP Ib alpha and GP IX were blocked; GP Ib beta had the N-terminal sequence, Ile-Pro-Ala-Pro-. On crossed immunoelectrophoresis, both GP Ib and GP IX were found to occur in the same immunoprecipitin arc(s) whether the platelets had been solubilized in the absence or presence of the calcium-dependent protease inhibitor, leupeptin. Binding studies in platelet-rich plasma indicated a similar number of binding sites (means +/- SD) for three anti-(glycoprotein Ib complex) monoclonal antibodies: AN 51, epitope on GP Ib alpha (22 000 +/- 2700, n = 3), WM 23, epitope on GP Ib alpha (21 000 +/- 3400, n = 3), FMC 25, epitope on GP IX (20 100 +/- 2700, n = 3), and FMC 25 (Fab')2 (27 100 +/- 800, n = 2).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The localization of the platelet glycoprotein GP Ib-IX complex (GP Ibα, GP Ibβ, and GP IX) to membrane lipid domain, also known as glycosphingolipid-enriched membranes (GEMs or raft) lipid domain, is essential for the GP Ib-IX complex mediated platelet adhesion to von Willebrand factor (vWf) and subsequent platelet activation. To date, the mechanism for the complex association with the GEMs remains unclear. Although the palmitate modifications of GP Ibβ and GP IX were thought to be critical for the complex presence in the GEMs, we found that the removal of the putative palmitoylation sites of GP Ibβ and GP IX had no effects on the localization of the GP Ib-IX complex to the GEMs. Instead, the disruption of GP Ibα disulfide linkage with GP Ibβ markedly decreased the amount of the GEM-associated GP Ibα without altering the GEM association of GP Ibβ and GP IX. Furthermore, partial dissociation with the GEMs greatly inhibited GP Ibα interaction with vWf at high shear instead of in static condition or under low shear stress. Thus, for the first time, we demonstrated that GP Ibβ/GP IX mediates the disulfide-linked GP Ibα localization to the GEMs, which is critical for vWf interaction at high shear.  相似文献   

3.
Platelet function is inhibited by agents such as prostaglandin E1 (PGE1) that elevate the cytoplasmic concentration of cyclic AMP. Inhibition presumably results from the cyclic AMP-stimulated phosphorylation of intracellular proteins. Polypeptides that become phosphorylated are actin-binding protein, P51 (Mr = 51,000), P36 (Mr = 36,000), P24 (Mr = 24,000), and P22 (Mr = 22,000). Recently, we identified P24 as the beta-chain of glycoprotein (GP) Ib, a component of the plasma membrane GP Ib.IX complex. The existence of Bernard-Soulier syndrome, a hereditary disorder in which platelets selectively lack the GP Ib.IX complex, enabled us to examine whether the phosphorylation of GP Ib beta (P24) is responsible for any of the inhibitory effects of elevated cyclic AMP on platelet function. Exposure of control platelets to PGE1 increased phosphorylation of actin-binding protein, P51, P36, GP Ib beta, and P22. Prostaglandin E1 induced the same phosphorylation reactions in Bernard-Soulier platelets, except that of GP Ib beta, which is absent. In control platelets, PGE1 inhibited collagen-induced phosphorylation of myosin light chain, phosphorylation of P47 (an unidentified Mr 47,000 cytoplasmic protein that is phosphorylated by protein kinase C in stimulated platelets), aggregation, and the secretion of granule contents. Despite the absence of GP Ib beta, PGE1 also inhibited these collagen-induced responses in Bernard-Soulier platelets. However, while PGE1 inhibited collagen-induced polymerization of actin in control platelets, it did not inhibit actin polymerization in Bernard-Soulier platelets. These results suggest that cyclic AMP-induced phosphorylation of GP Ib inhibits collagen-induced actin polymerization in platelets. Because actin polymerization is required for at least some of the functional responses of platelets to an agonist, phosphorylation of Gp Ib beta may be one way in which cyclic AMP inhibits platelet function.  相似文献   

4.
The glycoprotein (GP) Ib-IX complex of the platelet plasma membrane mediates the adhesion of platelets to damaged blood vessel wall. The complex is composed of three membrane-spanning polypeptides, GP Ib alpha, GP Ib beta, and GP IX, all of which are absent from the platelets of patients with the hereditary bleeding disorder Bernard-Soulier syndrome. In this study we report stable expression of the recombinant receptor in three cell lines and demonstrate that the three subunits of the complex are necessary for its efficient expression on the plasma membrane. The expressed complex associates with the cytoskeleton of the transfected cells through an interaction with actin-binding protein and binds its ligand, von Willebrand factor. These data suggest that the lack of plasma membrane GP Ib-IX complex in the Bernard-Soulier syndrome could potentially arise from mutations affecting any one of its three subunits.  相似文献   

5.
Palmitylation of the glycoprotein IIb-IIIa complex in human blood platelets   总被引:3,自引:0,他引:3  
The presence of covalently bound palmitic acid in fibrinogen receptors, glycoproteins (GP) IIb and IIIa, has been explored in human blood platelets. Membrane fractions were isolated from fresh blood platelets labeled with [9,10-3H]palmitic acid and then analyzed for radioactive proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Protein bands were visualized by staining with Coomassie Brilliant Blue, excised, and counted in a liquid scintillation counter. The results indicate that membrane proteins with electrophoretic mobility corresponding to glycoproteins IIb and IIIa incorporate [9,10-3H]palmitic acid. The palmitylated glycoproteins IIb and IIIa were immunoprecipitated by specific anti-GP IIb and GP IIIa antisera. It is interesting to note that the palmitylation of these glycoproteins occurred rapidly in platelets activated with 0.5 unit of thrombin or 30 microM ADP. At the concentration used (100 micrograms/ml), cycloheximide did not inhibit incorporation of [3H]palmitate into the glycoproteins showing that this process is not dependent upon protein synthesis. The acyl moiety was resistant to denaturating detergents, delipidation with organic solvents, and hydrolyzable with hydroxylamine. In the case of membrane protein with the electrophoretic mobility of GP IIb, the radioactive label was significantly decreased after reduction with 2-mercaptoethanol. Final identification of GP IIIa as an acylated product in human platelets incubated with [9,10-3H]palmitic acid was provided by two-dimensional polyacrylamide gel electrophoresis. In contrast to GP IIb alpha, GP IIIa isolated by this method showed the presence of attached radioactive palmitic acid residues. Analysis by high performance liquid chromatography after methanolysis of the [3H]palmitate-labeled glycoproteins confirmed the fatty acid nature of the label. Palmitylation is a newly identified post-translational modification of the fibrinogen receptor which may play an important role in its interaction with the membrane and/or its biological function.  相似文献   

6.
Platelet function is inhibited by prostaglandin E1, prostaglandin I2, or forskolin, agents that increase the intracellular concentration of cyclic AMP. The inhibition appears to result from cyclic AMP-stimulated phosphorylation of specific intracellular proteins. One of the major increases in phosphorylation occurs in a polypeptide of Mr = 24,000 (P24). In this study, an effort was made to identify P24. Platelets prelabeled with [32P]phosphate were incubated with prostaglandin E1, prostaglandin I2, or forskolin. Proteins that became phosphorylated were detected by autoradiography of sodium dodecyl sulfate-polyacrylamide gels. Several lines of evidence indicated that P24 was the beta-subunit of the plasma membrane glycoprotein (GP) Ib, a glycoprotein that is essential for the adhesion of platelets to damaged subendothelium, for the rapid response of platelets to thrombin, and for the attachment of the membrane skeleton to the cytoplasmic face of the plasma membrane. P24 co-migrated with GP Ib beta on reduced gels (Mr = 24,000) and also on nonreduced gels (when GP Ib beta is disulfide-linked to GP Ib alpha and migrates with Mr = 170,000). Like GP Ib beta, P24 was associated with actin filaments in Triton X-100 lysates. Like GP Ib beta, it was selectively associated with filaments of the membrane skeleton and was released from filaments when the Ca2+-dependent protease was active. Antibodies against GP Ib immunoprecipitated P24 from platelet lysates. Finally, exposure of Bernard-Soulier platelets (which lack GP Ib) to prostaglandin E1 resulted in phosphorylation of other polypeptides, but not of P24. These studies show that P24, one of the major polypeptides phosphorylated when platelets are exposed to agents that inhibit platelet function by increasing the concentration of cyclic AMP, is the beta-subunit of GP Ib.  相似文献   

7.
Binding of von Willebrand factor (VWF) to GP Ib-IX mediates initial platelet adhesion and increases the subsequent adhesive function of alpha(IIb)beta(3). Because these responses are promoted most effectively by large VWF multimers, we hypothesized that receptor clustering modulates GP Ib-IX function. To test this, GP IX was fused at its cytoplasmic tail to tandem repeats of FKBP, and GP Ib-IX(FKBP)(2) and alpha(IIb)beta(3) were expressed in Chinese hamster ovary cells. Under flow conditions at wall shear rates of up to 2000 s(-1), GP Ib-IX(FKBP)(2) mediated cell tethering to immobilized VWF, just as in platelets. Conditional oligomerization of GP Ib-IX(FKBP)(2) by AP20187, a cell-permeable FKBP dimerizer, caused a decrease in cell translocation velocities on VWF (p < 0.001). Moreover, clustering of GP Ib-IX(FKBP)(2) by AP20187 led to an increase in alpha(IIb)beta(3) function, manifested under static conditions by increased cell adhesion to fibrinogen (p < 0.01) and under flow by increased stable cell adhesion to VWF (p < 0.04). Clustering of GP Ib-IX(FKBP)(2) also stimulated rapid tyrosine phosphorylation of ectopically expressed Syk, a putative downstream effector of GP Ib-IX in platelets. These studies establish that GP Ib-IX oligomerization, per se, affects the interaction of this receptor with VWF and its ability to influence the adhesive function of alpha(IIb)beta(3). By extrapolation, GP Ib-IX clustering in platelets may promote thrombus formation.  相似文献   

8.
Platelet responses are inhibited by agents such as prostaglandin E1 that increase the cytoplasmic concentration of cyclic AMP. Inhibition is thought to result from phosphorylation of specific proteins. One protein that becomes phosphorylated is glycoprotein (GP) Ib beta, a component of the GP Ib.IX complex. We have suggested that phosphorylation of GP Ib beta inhibits the collagen-induced polymerization of actin. The aim of the present study was to identify the amino acid(s) in GP Ib beta that is phosphorylated. Purified GP Ib.IX complex was phosphorylated by the catalytic subunit of purified bovine cyclic AMP-dependent protein kinase in the presence of [gamma-32P]ATP. Phosphoamino acid analysis showed that in GP Ib beta, [32P]phosphate was incorporated only into serine and was in a single tryptic peptide. Amino acid sequencing showed that this peptide was from the cytoplasmic domain of GP Ib beta and encompassed residues 161-175. A single serine residue, serine 166, contained the radiolabel. To determine whether the same residue was phosphorylated in intact platelets, GP Ib beta was isolated from 32P-labeled platelets before or after their exposure to prostaglandin E1. In both cases, radiolabel was present in phosphoserine and was in a single tryptic peptide. This peptide was the same as that which was phosphorylated in the purified GP Ib.IX complex, as shown by its identical mobility on two-dimensional tryptic maps, the presence of a positively charged residue in the fourth position, and the presence of the radiolabel in the sixth position of the peptide. This study shows that when cyclic AMP concentrations rise in platelets, the cytoplasmic domain of GP Ib beta is phosphorylated on serine 166, probably by cyclic AMP-dependent protein kinase. We suggest that phosphorylation of this residue may contribute to the inhibitory actions of cyclic AMP by inhibiting collagen-induced polymerization of actin.  相似文献   

9.
As the receptor on the platelet surface for von Willebrand factor, glycoprotein (GP) Ib-IX complex is critically involved in hemostasis and thrombosis. How the complex is assembled from GP Ibα, GP Ibβ and GP IX subunits, all of which are type I transmembrane proteins, is not entirely clear. Genetic and mutational analyses have identified the transmembrane (TM) domains of these subunits as active participants in assembly of the complex. In this study, peptides containing the transmembrane domain of each subunit have been produced and their interaction with one another characterized. Only the Ibβ TM sequence, but not the Ibα and IX counterparts, can form homo-oligomers in SDS-PAGE and TOXCAT assays. Following up on our earlier observation that a Ibβ-Ibα-Ibβ peptide complex (αβ2) linked through native juxtamembrane disulfide bonds could be produced from isolated Ibα and Ibβ TM peptides in detergent micelles, we show here that addition of the IX TM peptide facilitates formation of the native αβ2 complex, reproducing the same effect by the IX subunit in cells expressing the GP Ib-IX complex. Specific fluorescence resonance energy transfer was observed between donor-labeled αβ2 peptide complex and acceptor-conjugated IX TM peptide in micelles. Finally, the mutation D135K in the IX TM peptide could hamper both the formation of the αβ2 complex and the energy transfer, consistent with its reported effect in the full-length complex. Overall, our results have demonstrated directly the native-like heteromeric interaction among the isolated Ibα, Ibβ and IX TM peptides, which provides support for the four-helix bundle model of the TM domains in the GP Ib-IX complex and paves the way for further structural analysis. The methods developed in this study may be applicable to other studies of heteromeric interaction among multiple TM helices.  相似文献   

10.
M C Berndt  X P Du  W J Booth 《Biochemistry》1988,27(2):633-640
Whether the human platelet membrane glycoprotein (GP) Ib-IX complex is the receptor for ristocetin-dependent binding of von Willebrand factor (vWF) has been examined by reconstitution with the purified components using a solid-phase bead assay. Purified GP Ib-IX complex was bound and orientated on the beads via a monoclonal antibody, FMC 25, directed against the membrane-associated region of the complex. Specific binding of 125I-labeled vWF to the GP Ib-IX complex coated beads was strictly ristocetin dependent with maximal binding occurring at ristocetin concentrations greater than or equal to 1 mg/mL. Ristocetin-dependent specific binding of 125I-labeled vWF was saturable. The observed binding was specific to the interaction between vWF and the GP Ib-IX complex since there was no ristocetin-dependent specific binding of vWF if the physicochemically related platelet membrane glycoprotein, GP IIb, was substituted for the GP Ib-IX complex in a corresponding bead assay. Further, neither bovine serum albumin nor other adhesive glycoproteins, such as fibrinogen or fibronectin, specifically bound to the GP Ib-IX complex in the presence of ristocetin. Ristocetin-dependent binding of vWF to platelets and to GP Ib-IX complex coated beads was inhibited by monoclonal antibodies against a 45,000 molecular weight N-terminal region of GP Ib but not by monoclonal antibodies directed against other regions of the GP Ib-IX complex. Similar correspondence between platelets and purified GP Ib-IX complex with respect to the ristocetin-dependent binding of vWF was obtained with anti-vWF monoclonal antibodies.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The interaction of platelet membrane glycoprotein (GP) Ib-IX complex with the cytoplasmic membrane skeleton is potentially of major importance in regulating platelet function. Indirect evidence suggested that this interaction is mediated by actin-binding protein, but it is not known whether GP Ib-IX and actin-binding protein associate directly. To examine more closely the nature of this association, purified GP Ib-IX complex was specifically bound and oriented on the surface of impermeable polymer beads via a monoclonal antibody, AK 2, directed against the extracytoplasmic domain of GP Ib alpha (glycocalicin). Binding was specific since 1) it was abolished by excess unlabeled actin-binding protein; 2) there was no detectable specific binding of radiolabeled actin-binding protein to beads coated with glycocalicin, the major extracytoplasmic proteolytic fragment of GP Ib alpha; and 3) unlike actin-binding protein, there was no specific binding of bovine serum albumin or human platelet vinculin to the GP Ib-IX complex-coated beads. Binding of actin-binding protein to the GP Ib-IX complex-coated beads, but not to the glycocalicin-coated beads, was saturable and reversible (apparent Kd = 1 x 10(-7) M). These experiments provide direct evidence that actin-binding protein can bind to the cytoplasmic domain of a membrane glycoprotein. Because actin-binding protein is found submembranously in cells other than the platelet, it is possible that this protein may link actin filaments to the plasma membrane in those cells.  相似文献   

12.
The platelet membrane glycoprotein (GP) Ib-IX complex is a major site of attachment of the platelet membrane skeleton to the plasma membrane. This association is mediated by the interaction of actin-binding protein with the GP Ib-IX complex. The aim of the present work was to identify domains on the GP Ib-IX complex that interact with actin-binding protein. Synthetic peptides corresponding to sequences of the GP Ib alpha-chain and beta-chain cytoplasmic domains were analyzed for their ability to bind to purified actin-binding protein. Two overlapping peptides encompassing a sequence (Thr-536-Phe-568) from the central region of the cytoplasmic domain of GP Ib alpha were the most effective in binding 125I-actin-binding protein, as assessed by a microtiter well approach and peptide affinity chromatography. One of the active peptides (Thr-536-Leu-554) was chosen to evaluate the likelihood that the central region of the cytoplasmic domain of GP Ib alpha is involved in binding of the intact complex to actin-binding protein. This peptide could be specifically cross-linked to purified actin-binding protein in solution. Rabbit polyclonal antibody against this peptide inhibited the binding of purified actin-binding protein to the purified GP Ib-IX complex. Finally, as in intact platelets, the calpain-induced hydrolytic fragments of purified actin-binding protein (M(r) = 200,000 and M(r) = 91,000) showed little binding to the GP Ib alpha peptide. Taken together, these results provided evidence that a region between Thr-536 and Phe-568 of the cytoplasmic domain of GP Ib alpha participates in the interaction of the GP Ib-IX complex with actin-binding protein.  相似文献   

13.
Lipoproteins of Haemophilus influenzae type b.   总被引:8,自引:0,他引:8       下载免费PDF全文
Haemophilus influenzae type b Minn A produced 12 lipoproteins with apparent molecular weights of between 14,000 and 67,000. The lipoproteins were identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography of delipidated extracts of cells grown in [3H]palmitate. When the delipidated cell extracts were subjected to acid methanolysis, tritium was quantitatively recovered as palmitate and methyl palmitate, indicating that the [3H]palmitate had not been degraded and reincorporated into nonlipid material during cell growth. One of the lipoproteins comigrated with outer membrane protein (OMP) P6. OMP P6 was purified from [3H]palmitate-labeled cells. The purified protein preparation contained both amide- and ester-linked fatty acids. We conclude that (i) H. influenzae type b produces several lipoproteins, and (ii) one of these lipoproteins is OMP P6, a protein under consideration as a vaccine component.  相似文献   

14.
A 39/34-kilodalton (kDa) monomeric dispase fragment of von Willebrand factor (vWF) has been purified by heparin affinity chromatography. Detailed structural analysis of the individual 39- and 34-kDa fragments indicated that they had identical amino acid sequences extending from Leu-480/Val-481 to Gly-718 with an intramolecular disulfide bond between Cys-509 and Cys-695. In addition to the binding site for heparin, the 39/34-kDa fragment also contained binding sites for collagen and for platelet membrane glycoprotein (GP) Ib. Unlike native vWF, the 39/34-kDa fragment bound to GP Ib without the requirement for a modulator but showed increased binding in the presence of botrocetin. The 39/34-kDa vWF fragment was cross-linked to intact human platelets by using the membrane-impermeable, homobifunctional cross-linking reagent bis(sulfosuccinimidyl) suberate. Two distinct cross-linked species of similar molecular weight (220/200 kDa, nonreduced; 190/175 kDa, reduced) were identified by SDS-polyacrylamide gel electrophoresis and autoradiography, consistent with the cross-linking of the 125I-labeled 39/34-kDa vWF fragment to GP Ib. The formation of these cross-linked species was enhanced 1.5-2.5-fold in the presence of the modulator botrocetin. The platelet membrane protein involved in cross-linking was shown unequivocally to be GP Ib since (i) neither cross-linked species was formed with Bernard-Soulier syndrome platelets, which genetically lack the GP Ib-IX complex, (ii) both cross-linked species were specifically immunoprecipitated by anti-GP Ib polyclonal and monoclonal antibodies, and (iii) the formation of the cross-linked species was completely inhibited only by those anti-GP Ib-IX complex monoclonal antibodies that inhibited vWF-GP Ib-IX complex interaction. Proteolysis of cross-linked platelets with endoproteinase Lys-C, which preferentially cleaves off the N-terminal peptide domain on the alpha-chain of GP Ib, indicated that the 39/34-kDa vWF fragment was cross-linked exclusively to this region of the GP Ib-IX complex.  相似文献   

15.
Interaction of von Willebrand factor (vWF) with its platelet receptor only occurs in vitro in the presence of a modulator such as ristocetin. We have recently confirmed that the human platelet membrane glycoprotein (GP) Ib-IX complex is the receptor involved in the ristocetin-dependent binding of vWF by reconstitution with the purified components [Berndt, M.C., Du, X., & Booth, W.J. (1988) Biochemistry 27, 633-640]. We have now developed a similar solid-phase reconstitution assay using an alternate modulator, botrocetin, for the competitive analysis of functional domains in both vWF and the GP Ib-IX complex. Botrocetin was purified from Bothrops jararaca venom by ammonium sulfate fractionation and subsequent DEAE-cellulose and hydroxylapatite chromatography. The purified protein was a 25-kilodalton (kDa) disulfide-linked dimer with apparent subunit molecular weights of 14,000 and 14,500. Binding studies with immobilized botrocetin demonstrated that botrocetin bound to vWF and to a 52/48-kDa region of vWF that contains the GP Ib binding domain, but not to glycocalicin, a proteolytic fragment of GP Ib that contains the vWF binding site. Binding of 125I-labeled vWF to GP Ib-IX complex coated beads and to platelets was strictly botrocetin-dependent with half-maximal binding at a botrocetin concentration of congruent to 0.27 microM. Botrocetin-dependent binding of vWF was specific, saturable, and comparable to that observed with ristocetin. An anti-vWF monoclonal antibody, 3F8, inhibited ristocetin- but not botrocetin-dependent binding of vWF, suggesting the presence of distinct ristocetin and botrocetin modulator sites on vWF. The botrocetin reconstitution assay was at least an order of magnitude more sensitive than the corresponding ristocetin assay for the competitive analysis of functional domains on both vWF and the GP Ib-IX complex and has confirmed the localization of the vWF-binding domain to the 45-kDa N-terminal region of GP Ib.  相似文献   

16.
The human transferrin receptor could be fluorographically detected after immunoprecipitation from a leukemic T-cell line labeled with [3H]palmitic acid. The label was found ony in association with the human transferrin receptor and not in association with two other major plasma membrane glycoproteins, demonstrating that the incorporation of radioactivity was not due to metabolism of the palmitate. Treatment of sodium dodecyl sulfate-polyacrylamide gels containing the [3H]palmitate-labeled transferrin receptor with hydroxylamine, prior to fluorography, resulted in release of a substantial fraction of the label from the molecule. In addition, at least part of the label released from immunoprecipitates of the transferrin receptor by treatment with hydroxylamine was identified as palmitohydroxamate, providing further evidence that the labeled fatty acid is covalently bound to the receptor. A proteolytic fragment (Mr = 70,000) derived from the portion of the transferrin receptor exposed on the cell surface can be obtained by trypsin digestion of intact or Nonidet P-40-solubilized cells. When cells were labeled with [3H]palmitic acid, none of the radioactivity could be detected in the tryptic fragment. Thus, the bound palmitate appears to be associated with the region of the molecule that is in close proximity to the plasma membrane.  相似文献   

17.
As the first step in hemostasis, the binding of von Willebrand factor (vWF) to the platelet membrane glycoprotein (GP) Ib-IX complex is essential for platelet adhesion at high-shear blood flow. This interaction in vivo requires the prior binding of vWF to the subendothelial matrix, a process which exposes a normally cryptic binding site on vWF for the GP Ib-IX complex. This process can be mimicked in vitro by modulators such as ristocetin or the snake venom protein botrocetin or by desialation of vWF. We have previously localized the GP Ib binding site on vWF to a monomeric dispase fragment which extends from Leu-480/Val-481 to Gly-718 in the primary sequence of mature vWF [Andrews, R. K., Gorman, J. J., Booth, W. J., Corino, G. L., Castaldi, P. A., & Berndt, M. C. (1989) Biochemistry 28, 8326-8336]. This fragment also contains a distinct binding site for botrocetin. Analysis of synthetic peptides corresponding to hydrophilic stretches of sequence within this fragment indicated that the sequence Asp-514-Glu-542 represents a major adhesive sequence involved in receptor recognition. This peptide inhibited both the ristocetin- and botrocetin-mediated binding of vWF to either platelets or purified GP Ib-IX complex (IC50 approximately 50-200 microM) as well as the asialo-vWF- and bovine vWF-dependent agglutination of platelets. Both the N- and C-terminal halves of the peptide were inhibitory but less so than the intact peptide. This peptide also inhibited botrocetin binding to vWF, suggesting that botrocetin modulates vWF-GP Ib interaction by binding in close proximity to the vWF adhesion sequence.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
A monoclonal antibody, mAb 1A, that immunoprecipitates the [3H]PN200-110-binding complex from rabbit skeletal muscle has been used to study the subunit structure of the dihydropyridine-sensitive, voltage-activated calcium channel. Digitonin-solubilized [3H]PN200-110-binding component, purified by wheat germ agglutinin chromatography, sediments as a 21 S complex. The sedimentation coefficient of the complex is increased to about 24 S after incubation with mAb 1A IgG. Four polypeptides with apparent molecular weights under nonreducing conditions of 220,000, 200,000, 61,000, and 33,000 co-sediment with the 21 S complex. mAb 1A recognizes the Mr 200,000 polypeptide, as shown by Western blotting analysis. [3H] PN200-110 complex purified by wheat germ agglutinin chromatography followed by immunoaffinity chromatography on an mAb 1A column is comprised primarily of the same four polypeptides. When analyzed by sodium dodecyl sulfate gel electrophoresis under reducing conditions, the Mr 220,000 protein migrates as a polypeptide of Mr 143,000; the mobility of the Mr 200,000 protein recognized by mAb 1A is unaffected by reduction. Thus, the Mr 200,000 polypeptide appears to be a previously undescribed component of the dihydropyridine-binding complex and, in association with the other polypeptides, may comprise the voltage-sensitive calcium channel.  相似文献   

19.
Platelets play an essential role in primary hemostasis and in thrombotic events, particularly in arterial vessels, as rheological conditions originate closer interactions between platelets and endothelium than lower shear rates. In response to vascular injury, platelets adhere to the subendothelial matrix by membrane receptors potentiating the generation of thrombin, become activated, and a series of biochemical processes induce platelet aggregation and liberation of intracellular metabolic products to the extracelular medium. Among platelet receptors, glycoprotein (GP) Ib/IX/V complex is peculiar, as it binds adhesive proteins, mainly von Willebrand factor (vWF), and thrombin, the main platelet agonist. Platelet adhesion and subsequent aggregation under conditions of high shear flow, essentially relies upon this receptor's capacity of binding to the subendothelial matrix, initiating signal transduction. Two proteins associated to GP Ib/IX/V, actin-binding protein (ABP) 280 and 14-3-3zeta, are potential mediators of signal transduction by the complex, but their specific contribution in this process is not yet fully understood. Additionally, two proteins implicated in signal transduction by immune stimuli, FcgammaRIIA and FcR gamma-chain, associate with GPIb/IX/V complex, and increasing data indicate a potential role in GPIbalpha mediated signal transduction.  相似文献   

20.
Lack of expression of glycoprotein (GP) Ib-IX-V complex in platelets often results from mutations in its three subunits: GP Ibalpha, GP Ibbeta, or GP IX. The requirement of all three subunits in the efficient surface expression of the receptor complex has been reproduced in Chinese hamster ovary cells. Here, we probed the role of the transmembrane domains in expression of the GP Ib-IX complex and potential interactions between these domains. Replacing the transmembrane domains of either GP Ibalpha or GP Ibbeta, but not that of GP IX, with unrelated sequences markedly diminished surface expression of the GP Ib-IX complex in transiently transfected Chinese hamster ovary cells. Replacement of the Ibbeta transmembrane domain produced the largest effect. Furthermore, several single-site mutations in the Ibbeta transmembrane domain were found to significantly decrease overall expression as well as surface expression of GP Ibalpha, probably by perturbing the interaction between the Ibalpha and Ibbeta transmembrane domains and in turn reducing the stability of GP Ibalpha in the cell. Mutations S503V and S503L in the Ibalpha transmembrane domain partly reversed the expression-decreasing effect of mutation H139L, but not the others, in the Ibbeta transmembrane domain, suggesting a specific interaction between these two polar residues. Together, our results have demonstrated the importance of the Ibbeta transmembrane domain, through its interaction with the Ibalpha counterpart, to the proper assembly and efficient surface expression of the GP Ib-IX complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号