首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Human embryonic stem cells (hESCs) are typically cultured on fibroblast feeder cells or in fibroblast conditioned medium supplemented with fibroblast growth factor 2 (FGF2, also known as bFGF). FGF signaling appears to be important for hESC self-renewal and is required to enable the culture of hESCs in an undifferentiated state. In this study, we generated a transgenic fibroblast feeder line stably expressing a secretable FGF4 signal peptide tagged hFGF2 (4SP-hFGF2). The expression of this transgene functionally replaced the requirement for exogenous FGF2 when using these cells as feeders for the maintenance of hESCs. Under these conditions, hESCs maintained the typical marker of pluripotency assessed after long term culture, while still retaining the capacity for differentiation to all three germ layers. This transgene could be applied to mass produce 4SP-hFGF2 protein, serving to be an economical and effective strategy for culturing pluripotent stem cells as feeder cells.  相似文献   

2.
3.
4.
As a result of their pluripotency and potential for unlimited self‐renewal, human embryonic stem cells (hESCs) hold tremendous promise in regenerative medicine. An essential prerequisite for the widespread application of hESCs is the establishment of effective and efficient protocols for large‐scale cell culture, storage, and distribution. At laboratory scales hESCs are cultured adherent to tissue culture plates; these culture techniques are labor‐intensive and do not scale to high cell numbers. In an effort to facilitate larger scale hESC cultivation, we investigated the feasibility of culturing hESCs adherent to microcarriers. We modified the surface of Cytodex 3 microcarriers with either Matrigel or mouse embryonic fibroblasts (MEFs). hESC colonies were effectively expanded in a pluripotent, undifferentiated state on both Matrigel‐coated microcarriers and microcarriers seeded with a MEF monolayer. While the hESC expansion rate on MEF‐microcarriers was less than that on MEF‐plates, the doubling time of hESCs on Matrigel‐microcarriers was indistinguishable from that of hESCs expanded on Matrigel‐coated tissue culture plates. Standard hESC cryopreservation methodologies are plagued by poor viability and high differentiation rates upon thawing. Here, we demonstrate that cryopreservation of hESCs adherent to microcarriers in cryovials provides a higher recovery of undifferentiated cells than cryopreservation of cells in suspension. Together, these results suggest that microcarrier‐based stabilization and culture may facilitate hESC expansion and storage for research and therapeutic applications. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

5.
Fibroblast feeder cells play an important role in supporting the derivation and long term culture of undifferentiated, pluripotent human embryonic stem cells (hESCs). The feeder cells secrete various growth factors and extracellular matrix (ECM) proteins into extracellular milieu. However, the roles of the feeder cell-secreted factors are largely unclear. Animal feeder cells and use of animal serum also make current feeder cell culture conditions unsuitable for derivation of clinical grade hESCs. We established xeno-free feeder cell lines using human serum (HS) and studied their function in hESC culture. While human foreskin fibroblast (hFF) feeder cells were clearly hESC supportive, none of the established xeno-free human dermal fibroblast (hDF) feeder cells were able to maintain undifferentiated hESC growth. The two fibroblast types were compared for their ECM protein synthesis, integrin receptor expression profiles and key growth factor secretion. We show that hESC supportive feeder cells produce laminin-511 and express laminin-binding integrins α3ß1, α6ß1 and α7ß1. These results indicate specific laminin isoforms and integrins in maintenance of hESC pluripotency in feeder-dependent cultures. In addition, several genes with a known or possible role for hESC pluripotency were differentially expressed in distinct feeder cells.  相似文献   

6.
Mouse embryonic fibroblasts (MEFs) were used to establish human embryonic stem cells (hESCs) cultures after blastocyst isolation1. This feeder system maintains hESCs from undergoing spontaneous differentiation during cell expansion. However, this co-culture method is labor intensive, requires highly trained personnel, and yields low hESC purity4. Many laboratories have attempted to minimize the number of feeder cells in hESC cultures (i.e. incorporating matrix-coated dishes or other feeder cell types5-8). These modified culture systems have shown some promise, but have not supplanted the standard method for culturing hESCs with mitomycin C-treated mouse embyronic fibroblasts in order to retard unwanted spontaneous differentiation of the hESC cultures. Therefore, the feeder cells used in hESC expansion should be removed during differentiation experiments. Although several techniques are available for purifying the hESC colonies (FACS, MACS, or use of drug resistant vectors) from feeders, these techniques are labor intensive, costly and/or destructive to the hESC. The aim of this project was to invent a method of purification that enables the harvesting of a purer population of hESCs. We have observed that in a confluent hESC culture, the MEF population can be removed using a simple and rapid aspiration of the MEF sheet. This removal is dependent on several factors, including lateral cell-to-cell binding of MEFs that have a lower binding affinity to the styrene culture dish, and the ability of the stem cell colonies to push the fibroblasts outward during the generation of their own "niche". The hESC were then examined for SSEA-4, Oct3/4 and Tra 1-81 expression up to 10 days after MEF removal to ensure maintenance of pluripotency. Moreover, hESC colonies were able to continue growing from into larger formations after MEF removal, providing an additional level of hESC expansion.  相似文献   

7.
Suspension bioreactors are an attractive alternative to static culture of human embryonic stem cells (hESCs) for the generation of clinically relevant cell numbers in a controlled system. In this study, we have developed a scalable suspension culture system using serum-free defined media with spinner flasks for hESC expansion as cell aggregates. With optimized cell seeding density and splitting interval, we demonstrate prolonged passaging and expansion of several hESC lines with overall expansion, yield, viability and maintenance of pluripotency equivalent to adherent culture. Human ESCs maintained in suspension as aggregates can be passaged at least 20 times to achieve over 1×10(13) fold calculated expansion with high undifferentiation rate and normal karyotype. Furthermore, the aggregates are able to differentiate to cardiomyocytes in a directed fashion. Finally, we show that the cells can be cryopreserved in serum-free medium and thawed into adherent or suspension cultures to continue passaging and expansion. We have successfully used this method under cGMP or cGMP-equivalent conditions to generate cell banks of several hESC lines. Taken together, our suspension culture system provides a powerful approach for scale-up expansion of hESCs under defined and serum-free conditions for clinical and research applications.  相似文献   

8.
Human embryonic stem cells (hESCs) can serve as an unlimited cell source for cellular transplantation and tissue engineering due to their prolonged proliferation capacity and their unique ability to differentiate into derivatives of all three-germ layers. In order to reliably and safely produce hESCs, use of reagents that are defined, qualified, and preferably derived from a non-animal source is desirable. Traditionally, mouse embryonic fibroblasts (MEFs) have been used as feeder cells to culture undifferentiated hESCs. We recently reported a scalable feeder-free culture system using medium conditioned by MEFs. The base and conditioned medium (CM) still contain unknown bovine and murine-derived components, respectively. In this study, we report the development of a hESC culture system that utilizes a commercially available serum-free medium (SFM) containing human sourced and recombinant proteins supplemented with recombinant growth factor(s) and does not require conditioning with feeder cells. In this system, which employs human laminin coated surface and high concentration of hbFGF, the hESCs maintained undifferentiated hESC morphology and had a twofold increase in expansion compared to hESCs grown in MEF-CM. The hESCs also expressed surface markers SSEA-4 and Tra-1-60 and maintained expression of hTERT, Oct4, and Cripto genes similar to cells cultured in MEF-CM. In addition, hESCs maintained in this culture system were able to differentiate in vitro and in vivo into cells of all three-germ layers. The cells maintained a normal karyotype after prolonged culture in SFM. In summary, this study demonstrates that the hESCs cultured in defined non-conditioned serum-free medium (NC-SFM) supplemented with growth factor(s) retain the characteristics and replicative potential of hESCs. The use of defined culture system with NC-SFM on human laminin simplifies scale-up and allows for reproducible generation of hESCs under defined and controlled conditions that would serve as a starting material for production of hESC derived cells for therapeutic use.  相似文献   

9.
Various types of feeder cells have been adopted for the culture of human embryonic stem cells (hESCs) to improve their attachment and provide them with stemness-supporting factors. However, feeder cells differ in their capacity to support the growth of undifferentiated hESCs. Here, we compared the expression and secretion of four well-established regulators of hESC pluripotency and/or differentiation among five lines of human foreskin fibroblasts and primary mouse embryonic fibroblasts throughout a standard hESC culture procedure. We found that human and mouse feeder cells secreted comparable levels of TGF beta 1. However, mouse feeder cells secreted larger quantities of activin A than human feeder cells. Conversely, FGF-2, which was produced by human feeder cells, could not be detected in culture media from mouse feeder cells. The quantity of BMP-4 was at about the level of detectability in media from all feeder cell types, although BMP-4 dimers were present in all feeder cells. Production of TGF beta 1, activin A, and FGF-2 varied considerably among the human-derived feeder cell lines. Low- and high-producing human feeder cells as well as mouse feeder cells were evaluated for their ability to support the undifferentiated growth of hESCs. We found that a significantly lower proportion of hESCs maintained on human feeder cell types expressed SSEA3, an undifferentiated cell marker. Moreover, SSEA3 expression and thus the pluripotent hESC compartment could be partially rescued by addition of activin A. Cumulatively, these results suggest that the ability of a feeder layer to promote the undifferentiated growth of hESCs is attributable to its characteristic growth factor production.  相似文献   

10.
Objective:  Spontaneous differentiation of human embryonic stem cell (hESC) cultures is a major concern in stem cell research. Physical removal of differentiated areas in a stem cell colony is the current approach used to keep the cultures in a pluripotent state for a prolonged period of time. All hESCs available for research require unidentified soluble factors secreted from feeder layers to maintain the undifferentiated state and pluripotency. Under experimental conditions, stem cells are grown on various matrices, the most commonly used being Matrigel.
Materials and Methods:  We propose an alternative method to prevent spontaneous differentiation of hESCs grown on Matrigel that uses low amounts of recombinant noggin. We make use of the porosity of Matrigel to serve as a matrix that traps noggin and gradually releases it into the culture to antagonize bone morphogenetic proteins (BMP). BMPs are known to initiate differentiation of hESCs and are either present in the conditioned medium or are secreted by hESCs themselves.
Results:  hESCs grown on Matrigel supplemented with noggin in conditioned medium from feeder layers (irradiated mouse embryonic fibroblasts) retained both normal karyotype and markers of hESC pluripotency for 14 days. In addition, these cultures were found to have increased cell proliferation of stem cells as compared to hESCs grown on Matrigel alone.
Conclusion:  Noggin can be utilized for short term prevention of spontaneous differentiation of stem cells grown on Matrigel.  相似文献   

11.
Human embryonic stem cells (hESCs) are expected to open up new avenues in regenerative medicine by allowing the generation of transplantable cells to be used in future cell replacement therapies. Maintenance of hESCs in the presence of xenogenic compounds is likely to prevent their use in future therapeutic applications in humans. Recently, it has been claimed that human foreskin-derived human embryonic fibroblast (HEFs) and human adult marrow cells have the ability to support prolonged expansion of hESCs in culture similar to murine feeders. Here, to minimize the use of xenogenic components for hESC maintenance, we performed transmission electron microscopy-based microbiological studies in an attempt to implement a microbiological Quality Assurance Program in Stem Cell Banks by determining the potential presence of viral particles in MEFs compared with human HEFs and bone marrow-derived mesenchymal cells. We observed in three out of nine MEF samples (33.3%) viruses belonging to the Retroviridae family. Within the Retroviridae family, these viruses have a C morphology, which indicates they belong to the subfamily Orthoretroviridae. In contrast, no viral particles could be observed in either the HEF samples (n = 5) or the human BM-derived mesenchymal cells (n = 9) analyzed. Based on these experimental microbiological data, we recommend the implementation of microbiological Quality Assurance Programs by means of transmission electron microscopy as a routine technique to assess the potential presence of viral particles in any feeder cell used in stem cell banks and support the use of human cells rather than murine cells as feeders to maintain hESC cultures in an undifferentiated state.  相似文献   

12.
Human embryonic stem cells (hESC) are pluripotent cells that proliferate indefinitely in culture, whilst retaining their capacity for differentiation into different cell types. However, hESC cultures require culture in direct contact with feeder cells or conditioned medium (CM) from feeder cells. The most common source of feeders has been primary mouse embryonic fibroblast (MEF). In this study, we immortalized a primary MEF line with the E6 and E7 genes from HPV16. The immortal line, DeltaE-MEF, was able to proliferate beyond 7-9 passages and has an extended lifespan beyond 70 passages. When tested for its ability to support hESC growth, it was found that hESC continue to maintain the undifferentiated morphology for >40 passages both in co-culture with DeltaE-MEF and in feeder-free cultures supplemented with CM from DeltaE-MEF. The cultures also continue to express the pluripotent markers, Oct-4, SSEA-4, Tra-1-60, Tra-1-81, alkaline phosphatase and maintain a normal karyotype. In addition, these hESC formed teratomas when injected into SCID mice. Lastly, we demonstrated the feasibility of scaling-up significant quantities of undifferentiated hESC (>10(8) cells) using DeltaE-MEF in cell factories. The results from this study suggest that immortalized feeders can provide a consistent and reproducible source of feeders for hESC expansion and research.  相似文献   

13.
Human pluripotent stem cells (hPSCs) that include human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) have gained enormous interest as potential sources for regenerative biomedical therapies and model systems for studying early development. Traditionally, mouse embryonic fibroblasts have been used as a supportive feeder layer for the sustained propagation of hPSCs. However, the use of nonhuman‐derived feeders presents concerns about the possibility of xenogenic contamination, labor intensiveness, and variability in experimental results in hPSC cultures. Toward addressing some of these concerns, we report the propagation of three different hPSCs on feeder‐free extracellular matrix (ECM)‐based substrates derived from human fibroblasts. hPSCs propagated in this setting were indistinguishable by multiple criteria, including colony morphology, expression of pluripotency protein markers, trilineage in vitro differentiation, and gene expression patterns, from hPSCs cultured directly on a fibroblast feeder layer. Further, hPSCs maintained a normal karyotype when analyzed after 15 passages in this setting. Development of this ECM‐based culture system is a significant advance in hPSC propagation methods as it could serve as a critical component in the development of humanized propagation systems for the production of stable hPSCs and its derivatives for research and therapeutic applications. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

14.
Development of generic differentiation protocols that function in a range of independently-derived human embryonic stem cell (hESC) lines remains challenging due to considerable diversity in culture methods practiced between lines. Maintenance of BG01 and HUES-7 has routinely been on mouse embryonic fibroblast (MEF) feeder layers using manual- and trypsin-passaging, respectively. We adapted both lines to trypsin-passaging on feeders or on Matrigel in feeder-free conditions and assessed proliferation and cardiac differentiation. On feeders, undifferentiated proliferation of BG01 and HUES-7 was supported by all three media tested (BG-SK, HUES-C and HUES-nL), although incidence of karyotypic instability increased in both lines in BG-SK. On Matrigel, KSR-containing conditioned medium (CM) promoted undifferentiated cell proliferation, while differentiation occurred in CM containing Plasmanate or ES-screened Fetal Bovine Serum (FBS) and in unconditioned medium containing 100 ng/ml bFGF. Matrigel cultures were advantageous for transfection but detrimental to embryoid body (EB) formation. However, transfer of hESCs from Matrigel back to feeders and culturing to confluence was found to rescue EB formation. EBs formed efficiently when hESCs on feeders were treated with collagenase, harvested by scraping and then cultured in suspension in CM. Subsequent culture in FBS-containing medium produced spontaneously contracting EBs, for which the mean beat rate was 37.2 +/- 2.3 and 41.1 +/- 3.1 beats/min for BG01-EBs and HUES-7-EBs, respectively. Derived cardiomyocytes expressed cardiac genes and responded to pharmacological stimulation. Therefore the same culture and differentiation conditions functioned in two independently-derived hESC lines. Similar studies in other lines may facilitate development of universal protocols.  相似文献   

15.
16.
Traditionally, undifferentiated human embryonic stem cells (hESCs) are maintained on mouse embryonic fibroblast (MEF) cells or on matrigel with an MEF-conditioned medium (CM), which hampers the clinical applications of hESCs due to the contamination by animal pathogens. Here we report a novel chemical-defined medium using DMEM/F12 supplemented with N2, B27, and basic fibroblast growth factor (bFGF) [termed NBF]. This medium can support prolonged self-renewal of hESCs. hESCs cultured in NBF maintain an undifferentiated state and normal karyotype, are able to form embryoid bodies in vitro, and differentiate into three germ layers and extraembryonic cells. Furthermore, we find that hESCs cultured in NBF possess a low apoptosis rate and a high proliferation rate compared with those cultured in MEF-CM. Our findings provide a novel, simplified chemical-defined culture medium suitable for further therapeutic applications and developmental studies of hESCs.  相似文献   

17.
Autophagy in human embryonic stem cells   总被引:2,自引:0,他引:2  
Autophagy (macroautophagy) is a degradative process that involves the sequestration of cytosolic material including organelles into double membrane vesicles termed autophagosomes for delivery to the lysosome. Autophagy is essential for preimplantation development of mouse embryos and cavitation of embryoid bodies. The precise roles of autophagy during early human embryonic development, remain however largely uncharacterized. Since human embryonic stem cells constitute a unique model system to study early human embryogenesis we investigated the occurrence of autophagy in human embryonic stem cells. We have, using lentiviral transduction, established multiple human embryonic stem cell lines that stably express GFP-LC3, a fluorescent marker for the autophagosome. Each cell line displays both a normal karyotype and pluripotency as indicated by the presence of cell types representative of the three germlayers in derived teratomas. GFP expression and labelling of autophagosomes is retained after differentiation. Baseline levels of autophagy detected in cultured undifferentiated hESC were increased or decreased in the presence of rapamycin and wortmannin, respectively. Interestingly, autophagy was upregulated in hESCs induced to undergo differentiation by treatment with type I TGF-beta receptor inhibitor SB431542 or removal of MEF secreted maintenance factors. In conclusion we have established hESCs capable of reporting macroautophagy and identify a novel link between autophagy and early differentiation events in hESC.  相似文献   

18.
The use of human embryonic stem cells (hESCs) for cell-based therapies will require large quantities of genetically stable pluripotent cells and their differentiated progeny. Traditional hESC propagation entails adherent culture and is sensitive to enzymatic dissociation. These constraints hamper modifying method from 2-dimensional flat-bed culture, which is expensive and impractical for bulk cell production. Large-scale culture for clinical use will require innovations such as suspension culture for bioprocessing. Here we describe the attachment and growth kinetics of both murine embryonic stem cells (mESCs) and hESCs on trimethyl ammonium-coated polystyrene microcarriers for feeder-free, 3-dimensional suspension culture. mESCs adhered and expanded according to standard growth kinetics. For hESC studies, we tested aggregate (collagenase-dissociated) and single-cell (TrypLE-dissociated) culture. Cells attached rapidly to beads followed by proliferation. Single-cell cultures expanded 3-fold over approximately 5 days, slightly exceeding that of hESC aggregates. Importantly, single-cell cultures were maintained through 6 passages with a 14-fold increase in cell number while still expressing the undifferentiated markers Oct-4 and Tra 1-81. Finally, hESCs retained their capacity to differentiate towards pancreatic, neuronal, and cardiomyocyte lineages. Our studies provide proof-of-principle of suspension-based expansion of hESCs on microcarriers, as a novel, economical and practical feeder-free means of bulk hESC production.  相似文献   

19.
20.
Human pluripotent embryonic stem cells (hESC) have great promise for research into human developmental biology and the development of cell therapies for the treatment of diseases. To meet the increased demand for characterized hESC lines, we present the derivation and characterization of five hESC lines on mouse embryonic fibroblast cells. Our stem cell lines are characterized by morphology, long-term expansion, and expression profiles of a number of specific markers, including TRA-1-60, TRA-1-81, alkaline phosphatase, connexin 43, OCT-4, NANOG, CXCR4, NODAL, LEFTY2, THY-1, TDGF1, PAX6, FOXD3, SOX2, EPHA2, FGF4, TAL1, AC133 and REX-1. The pluripotency of the cell line was confirmed by spontaneous differentiation under in vitro conditions. Whereas all of the cell lines expressed all the characteristics of undifferentiated pluripotent hESC, two of the cell lines carried a triploid karyotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号