首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Met and EGF receptors can induce a decrease in intercellular adhesion and an increase in cell motility, which is a cause of metastatic progressions. Therefore, mechanisms of interaction in receptor tyrosine kinase and proteins of intercellular contacts attract the attention of researchers. The main protein that provides cellular adhesion is E-cadherin. Earlier, we have shown that the intracellular Met localization was dependent on function of E-cadherin. In the present work, we have found that localization of the EGF receptor also was determined by adhesion stability. Loss of intercellular contacts in HBL-100 cells leads to the EGF receptor being not stabilized at the cell membrane. A comparative study of MAP kinase activation by growth factors was carried out in cells differing by their intercellular adhesion states. It has been established that E-cadherin is able to modulate level and duration of activation of ERK kinase. The presented results allow for the suggestion to be made that not only intracellular localization, but also the intracellular signal pathway activated by Met and EGF receptors, depend on the E-cadherin function, which in turn can determine the specificity of cellular response.  相似文献   

2.
High levels of the Met tyrosine kinase receptor expression are associated with metastatic disease. Met activation by hepatocyte growth factor (HGF) is associated with decreased E-cadherin-dependent cell-cell contacts. The molecular mechanism underlying this process remains unclear. To better understand the relationship between E-cadherin and Met, we assessed Met localization in cells which form mature E-cadherin-dependent adhesion HT-29 and cells which have lost E-cadherin expression BT-549. Met colocalized with E-cadherin at the site of cell-cell adhesion in HT-29 cells, but Met was distributed in an intracellular compartment in BT-549 cells. Forced expression of E-cadherin in BT-549 cells recruited Met to the membrane. Cross-linking studies suggested that Met and E-cadherin interact in the extracellular domain in HT-29 cells. This is the first evidence of a physical interaction between Met and E-cadherin. We suggest that this receptor/cadherin pairing may be a mechanism for cellular presentation of receptors in a manner that localizes them optimally for interaction with ligand.  相似文献   

3.
EGF is known to affect adherens junctions and disrupt cell-cell adhesion in a variety of carcinomas but the underlying mechanisms are not completely understood. Using human tumor epithelial cells overexpressing EGFR we demonstrated that EGF-induced cell scattering was mediated by protein kinase C-delta (PKC-δ). PKC-δ knockdown by siRNA significantly inhibited EGF-induced internalization of E-cadherin into the cytoplasm and blocked cell scattering. EGF phosphorylated PKC-δ at Y311 and ectopic expression of the mutant Y311F prevented PKC-δ binding to E-cadherin and EGF-induced cell scattering. Moreover, depletion of Src using siRNA decreased EGF-induced phosphorylation of PKC-δ at Y311 and blocked scattering. Finally, EGF reduced expression of the tight junction protein, occludin, and this effect was also mediated by PKC-δ through Src. In summary, PKC-δ mediated the effects of EGF on adherens and tight junctions thereby playing an important role in cell-cell adhesion with possible wider implications in tumor metastasis or epithelial-to-mesenchymal transition.  相似文献   

4.
Recent studies suggest that signal transduction may have an important role in the development and regulation of the metastatic phenotype. Here, we investigated the role of the epidermal growth factor receptor (EGFR), and protein kinase C (PKC), in the process of reassembly of cadherin-dependent cell-cell adhesion of Caco-2 cells. We used chemical activation of PKC and EGFR with 12- O-tetradecanoylphorbol-13-acetate (TPA), a tumor-promoting agent, pretreatment with protein kinase inhibitors and subcellular fractionation to analyze the effect of the phorbol ester on the redistribution of junctional proteins. Transepithelial resistance (TER), electron microscopy and immunofluorescence analyses were also carried out. Activation with TPA resulted in disassembly of adherens junctions (AJs), but the tight junction (TJ) structure and function remained unaltered. TPA affected E-cadherin levels. In Caco-2 cells at day 2 of culture, when most E-cadherin is not associated with the cytoskeleton, a decrease in the level of this protein was observed as soon as 6 h after TPA addition. However, at day 5 of culture, the major effect observed after 6 h of treatment was a translocation of the protein from the Triton-insoluble to the -soluble fraction. On the other hand, TPA did not significantly affect the E-cadherin-associated proteins alpha and beta-catenins. Potent specific EGFR inhibitors, such as PD153035 and Tyrphostin 25, as well as Calphostin C, an inhibitor of PKC, significantly blocked the effect of TPA on AJs. Furthermore, inhibition of the TPA effect by the PD98059 MAPK inhibitor suggests that activation of this kinase was the final event in the modulation of cadherin-dependent cell-cell adhesion. Pretreatment of cell monolayers with Calphostin C before EGF treatment, one of the ligands of EGFR, blocked the redistribution of E-cadherin caused by EGF. Based on these results, we conclude that both EGFR and PKC activation are involved in TPA-induced cell signaling for modulation of cadherin-dependent cell-cell adhesion and cell shape in Caco-2 cells.  相似文献   

5.
The potential significance of cell-cell interactions on EGF receptor (EGFR) activity was investigated in cultured adherent A431 cells seeded as single-cell suspensions with different initial cell densities. In dense cultures, EGFRs were mainly localised at cell boundaries and in microvilli as shown by immunofluorescence analysis with an EGFR-specific antibody while in sparse cultures the distribution of EGFRs was more diffuse. Scatchard analysis showed that as cell density decreased the number of high-affinity receptors increased considerably. Upon treatment of adherent intact cells with EGF all cells in sparse cultures contained activated EGFRs as demonstrated by immunofluorescence analysis with a phosphotyrosine-specific antibody, while in dense cultures mainly cells at the periphery of a cluster and especially at their expanding borders exhibited activated EGFRs. EGF-induced phosphorylation in intact cells was greatly enhanced in sparse compared with dense cultures as demonstrated by immunoprecipitation with a phosphotyrosine-specific antibody. In contrast to intact cells, in cytoskeleton preparations, obtained after mild detergent treatment of adherent cells, EGFRs were able to undergo EGF-independent phosphorylation. Pretreatment of cells with EGF led to enhanced tyrosine phosphorylation of cytoskeletal-associated proteins. Our observations suggest that cell density has a considerable effect on the subcellular localisation as well as biological activity of the EGFR. Thus, in intact A431 cells growing with extensive cell-cell interactions some negative control mechanisms preventing EGFR activation may be exerted by adjacent cells.  相似文献   

6.
The effect of hepatocyte growth factor /scatter factor (HGF/SF) and epidermal growth factor (EGF) on cadherin-mediated adhesion of human carcinoma cells was studied. HGF/SF induced scattering of colonic adenocarcinoma HT29 and gastric adenocarcinomas MKN7 and MKN74 cells. Likewise, EGF induced scattering of HT29 and MKN7 cells. These cells expressed E-cadherin, which was concentrated at cell-cell contact sites. When the scattering of these cells was induced by HGF/SF or EGF, the E-cadherin concentration at cell-cell boundaries tended to decrease. Irnmunoblotting analyses, however, demonstrated that these growth factor treatments did not alter the expression of E-cadherin and E-cadherin-associated proteins, α- and β-catenin and plakoglobin. β-Catenin, plakoglobin and an unidentified 115-kDa molecule associated with E-cadherin were found to be phosphorylated at tyrosine residues, and these phosphorylations were enhanced by the growth factor treatments. These results suggest that HGF/SF and EGF may modulate the function of the cadherin-catenin system via tyrosine phosphorylation of cadherin-associated proteins.  相似文献   

7.
E-Cadherin regulates epithelial cell adhesion and is critical for the maintenance of tissue integrity. In sporadic diffuse-type gastric carcinoma, mutations of the E-cadherin gene are frequently observed that predominantly affect putative calcium binding motifs located in the linker region between the second and third extracellular domains. A single amino acid change (D370A) as found in a gastric carcinoma patient reduces cell adhesion and up-regulates cell motility. To study the effect of this mutation on the dynamics of cell adhesion and motility in living cells, enhanced green fluorescent protein (EGFP) was C-terminally fused to E-cadherin. The resulting mutant E-cadherin-EGFP fusion protein with a point mutation in exon 8 (p8-EcadEGFP) and a wild-type E-cadherin-EGFP fusion construct (wt-EcadEGFP) were expressed in human MDA-MB-435S cells. Fluorescent images were acquired by time-lapse laser scanning microscopy and E-cadherin was visualized during contact formation and in moving cells. Spatial and temporal localization of p8- and wt-EcadEGFP differed significantly. While wt-EcadEGFP was mainly localized at lateral membranes of contacting cells and formed E-cadherin puncta and plaques, p8-EcadEGFP-expressing cells frequently formed transient cell-cell contacts. During random cell migration, p8-EcadEGFP was found in lamellipodia. In contrast, wt-EcadEGFP localized at lateral cell-cell contact sites in low or non-motile cells. Inhibition of the epidermal growth factor (EGF) receptor, which plays a major role in lamellipodia formation and cell migration, reduced the motility of p8-EcadEGFP-expressing cells and caused lateral membrane staining of p8-EcadEGFP. Conversely, EGF induced cell motility and caused formation of lamellipodia that were E-cadherin positive. In conclusion, our data show that mutant E-cadherin significantly alters the dynamics of cell adhesion and motility in living cells and interferes with the formation of stable cell-cell contacts.  相似文献   

8.
Cross-communication between the Met receptor tyrosine kinase and the epidermal growth factor receptor (EGFR) has been proposed to involve direct association of both receptors and EGFR kinase-dependent phosphorylation. Here, we demonstrate that in human hepatocellular and pancreatic carcinoma cells the Met receptor becomes tyrosine phosphorylated not only upon EGF stimulation but also in response to G protein-coupled receptor (GPCR) agonists. Whereas specific inhibition of the EGFR kinase activity blocked EGF- but not GPCR agonist-induced Met receptor transactivation, it was abrogated in the presence of a reducing agent or treatment of cells with a NADPH oxidase inhibitor. Both GPCR ligands and EGF are further shown to increase the level of reactive oxygen species within the cell. Interestingly, stimulation of the Met receptor by either GPCR agonists, EGF or its cognate ligand HGF, resulted in release of Met-associated beta-catenin and in its Met-dependent translocation into the nucleus, as analyzed by small interfering RNA-mediated knockdown of the Met receptor. Our results provide a new molecular explanation for cell surface receptor cross-talk involving the Met receptor and thereby link the wide diversity of GPCRs and the EGFR to the oncogenic potential of Met signaling in human carcinoma cells.  相似文献   

9.
Mucin production by epithelial cells is modulated by many soluble factors, including epidermal growth factor (EGF). E-Cadherin promotes EGF receptor (EGFR)-mediated MUC5AC mucin production in airway epithelial cells in dense cultures, suggesting the involvement of E-cadherin in activating EGFRs and mucin production. However, the role of E-cadherin in modulating mucin production is not completely understood. We examined its role in MUC5AC production in a human lung epithelial cell line, NCI-H292. Treatment of low density NCI-H292 cells with an anti-E-cadherin monoclonal antibody (SHE78-7) inhibited cell-cell contact in the dispersed colonies, but promoted MUC5AC production. Furthermore, treatment of the NCI-H292 cells with anti-E-cadherin antibody stimulated phosphorylation of extracellular signal-regulated kinase (ERK). The enhanced production of MUC5AC was inhibited with an EGFR inhibitor and with a MEK inhibitor, but not with a Src family kinase inhibitor. These results suggest that inhibition of E-cadherin activates EGFRs independently of Src and promotes MUC5AC production through the ERK signaling pathway in sparsely cultured NCI-H292 cells.  相似文献   

10.
Mucin production by epithelial cells is modulated by many soluble factors, including epidermal growth factor (EGF). E-Cadherin promotes EGF receptor (EGFR)-mediated MUC5AC mucin production in airway epithelial cells in dense cultures, suggesting the involvement of E-cadherin in activating EGFRs and mucin production. However, the role of E-cadherin in modulating mucin production is not completely understood. We examined its role in MUC5AC production in a human lung epithelial cell line, NCI-H292. Treatment of low density NCI-H292 cells with an anti-E-cadherin monoclonal antibody (SHE78-7) inhibited cell-cell contact in the dispersed colonies, but promoted MUC5AC production. Furthermore, treatment of the NCI-H292 cells with anti-E-cadherin antibody stimulated phosphorylation of extracellular signal-regulated kinase (ERK). The enhanced production of MUC5AC was inhibited with an EGFR inhibitor and with a MEK inhibitor, but not with a Src family kinase inhibitor. These results suggest that inhibition of E-cadherin activates EGFRs independently of Src and promotes MUC5AC production through the ERK signaling pathway in sparsely cultured NCI-H292 cells.  相似文献   

11.
The epidermal growth factor receptor (EGFR) has been proposed as a key modulator of cadherin-containing intercellular junctions, particularly in tumors that overexpress this tyrosine kinase. Here the EGFR tyrosine kinase inhibitor PKI166 and EGFR blocking antibody C225, both of which are used clinically to treat head and neck cancers, were used to determine the effects of EGFR inhibition on intercellular junction assembly and adhesion in oral squamous cell carcinoma cells. EGFR inhibition resulted in a transition from a fibroblastic morphology to a more epithelial phenotype in cells grown in low calcium; under these conditions cadherin-mediated cell-cell adhesion is normally reduced, and desmosomes are absent. The accumulated levels of desmoglein 2 (Dsg2) and desmocollin 2 increased 1.7-2.0-fold, and both desmosomal cadherin and plaque components were recruited to cell-cell borders. This redistribution was paralleled by an increase in Dsg2 and desmoplakin in the Triton-insoluble cell fraction, suggesting that EGFR blockade promotes desmosome assembly. Importantly, E-cadherin expression and solubility were unchanged. Furthermore, PKI166 blocked tyrosine phosphorylation of Dsg2 and plakoglobin following epidermal growth factor stimulation, whereas no change in phosphorylation was detected for E-cadherin and beta-catenin. The increase in Dsg2 protein was in part due to the inhibition of matrix metalloproteinase-dependent proteolysis of this desmosomal cadherin. These morphological and biochemical changes were accompanied by an increase in intercellular adhesion based on functional assays at all calcium concentrations tested. Our results suggest that EGFR inhibition promotes desmosome assembly in oral squamous cell carcinoma cells, resulting in increased cell-cell adhesion.  相似文献   

12.
In previous work, we showed that epidermal growth factor receptor (EGFR) activation causes mucin expression in airway epithelium in vivo and in human NCI-H292 airway epithelial cells and normal human bronchial epithelial (NHBE) cells in vitro. Here we show that the cell surface adhesion molecule, E-cadherin, promotes EGFR-mediated mucin production in NCI-H292 cells in a cell density- and cell cycle-dependent fashion. The addition of the EGFR ligand, transforming growth factor (TGF)-alpha, increased MUC5AC protein expression markedly in dense, but not in sparse, cultures. MUC5AC-positive cells in dense cultures contained 2 N DNA content and did not incorporate bromodeoxyuridine, suggesting that they develop via cell differentiation and that a surface molecule involved in cell-cell contact is important for EGFR-mediated mucin production. In support of this hypothesis, in dense cultures of NCI-H292 cells and in NHBE cells at air-liquid interface, blockade of E-cadherin-mediated cell-cell contacts decreased EGFR-dependent mucin production. E-cadherin blockade also increased EGFR-dependent cell proliferation and TGF-alpha-induced EGFR tyrosine phosphorylation in dense cultures of NCI-H292 cells, suggesting that E-cadherin promotes EGFR-dependent mucin production and inhibits EGFR-dependent cell proliferation via modulation of EGFR phosphotyrosine levels. Furthermore, in dense cultures, E-cadherin blockade decreased the rate of EGFR tyrosine dephosphorylation, implicating an E-cadherin-dependent protein tyrosine phosphatase in EGFR dephosphorylation. Thus E-cadherin promotes EGFR-mediated cell differentiation and MUC5AC production, and our results suggest that this occurs via a pathway involving protein tyrosine phosphatase-dependent EGFR dephosphorylation.  相似文献   

13.
Grb2-assosiated binder (Gab) family proteins are docking molecules that can interact with receptor tyrosine kinases (RTKs) and cytokine receptors and bind several downstream signalling proteins. Studies in several cell types have shown that Gab1 may have a role in signalling mediated by the two RTKs epidermal growth factor (EGF) receptor (EGFR) and Met, the receptor for hepatocyte growth factor (HGF), but the involvement of Gab1 in EGFR and Met signalling has not been directly compared in the same cell. We have studied mechanisms of activation and role in mitogenic signalling of Gab1 in response to EGF and HGF in cultured rat hepatocytes. Gab1, but not Gab2, was expressed in the hepatocytes and was phosphorylated upon stimulation with EGF or HGF. Depletion of Gab1, using siRNA, decreased the ERK and Akt activation, cyclin D1 expression, and DNA synthesis in response to both EGF and HGF. Studies of mechanisms of recruitment to the receptors showed that HGF induced co-precipitation of Gab1 and Met while EGF induced binding of Gab1 to Grb2 but not to EGFR. Gab1 activation in response to both EGF and HGF was dependent on PI3K. While EGF activated Gab1 and Shc equally, within the same concentration range, HGF very potently and almost exclusively activated Gab1, having only a minimal effect on Shc. Collectively, our results strongly suggest that although Gab1 interacts differently with EGFR and Met, it is involved in mitogenic signalling mediated by both these growth factor receptors in hepatocytes.  相似文献   

14.
E-cadherin is a Ca(2+)-dependent cell-cell adhesion molecule at adherens junctions (AJs) of epithelial cells. A fragment of N-cadherin lacking its extracellular region serves as a dominant negative mutant (DN) and inhibits cell-cell adhesion activity of E-cadherin, but its mode of action remains to be elucidated. Nectin is a Ca(2+)-independent immunoglobulin-like cell-cell adhesion molecule at AJs and is associated with E-cadherin through their respective peripheral membrane proteins, afadin and catenins, which connect nectin and cadherin to the actin cytoskeleton, respectively. We showed here that overexpression of nectin capable of binding afadin, but not a mutant incapable of binding afadin, reduced the inhibitory effect of N-cadherin DN on the cell-cell adhesion activity of E-cadherin in keratinocytes. Overexpressed nectin recruited N-cadherin DN to the nectin-based cell-cell adhesion sites in an afadin-dependent manner. Moreover, overexpression of nectin enhanced the E-cadherin-based cell-cell adhesion activity. These results suggest that N-cadherin DN competitively inhibits the association of the endogenous nectin-afadin system with the endogenous E-cadherin-catenin system and thereby reduces the cell-cell adhesion activity of E-cadherin. Thus, nectin plays a role in the formation of E-cadherin-based AJs in keratinocytes.  相似文献   

15.
目的研究上皮生长因子受体和FAK的相互作用以及对下游信号的影响。方法建立聚集粘连激酶(FAK)缺失突变和绿色荧光蛋白(GFP)融合基因del1-693FAK-GFP、del1-100FAK-GFP和FAK-GFP稳定表达细胞系。结果同野生型FAK-GFP相比,N-端1-100氨基酸残基的缺失突变体,缺失1-693氨基酸残基的突变体结合在黏附点的能力被完全抑制。应用等电聚焦和SDS-PAGE双向电泳证明,EGF和纤维连接蛋白诱导FAK磷酸化的位点不同,进一步证实del1-693FAK-GFP、del1-100FAK-GFP,抑制MAPK的磷酸化,增强Akt的磷酸化;而FAK-GFP增强MAPK磷酸化,抑制Akt磷酸化。结论FAK通过和EGFR的相互作用调节MAPK和Akt之间的相对平衡。  相似文献   

16.
E-cadherin is an essential adhesion protein as well as a tumor suppressor that is silenced in many cancers. Its adhesion-dependent regulation of signaling has not been elucidated. We report that E-cadherin can negatively regulate, in an adhesion-dependent manner, the ligand-dependent activation of divergent classes of receptor tyrosine kinases (RTKs), by inhibiting their ligand-dependent activation in association with decreases in receptor mobility and in ligand-binding affinity. E-cadherin did not regulate a constitutively active mutant RTK (Neu*) or the ligand-dependent activation of LPA receptors or muscarinic receptors, which are two classes of G protein-coupled receptors. EGFR regulation by E-cadherin was associated with complex formation between EGFR and E-cadherin that depended on the extracellular domain of E-cadherin but was independent of beta-catenin binding or p120-catenin binding. Transfection of E-cadherin conferred negative RTK regulation to human melanoma and breast cancer lines with downregulated endogenous E-cadherin. Abrogation of E-cadherin regulation may contribute to the frequent ligand-dependent activation of RTK in tumors.  相似文献   

17.
In mammalian cells, the binding of epidermal growth factor (EGF) to its receptor (EGFR), a glycoprotein with intrinsic tyrosine kinase activity, leads to the pleiotropic responses to EGF. Among these, a negative feedback response by stimulation of receptor internalization and lysosomal degradation, this attenuating signal transduction. In this work, data are reported on the identification of specific EGFRs in isolated digestive gland cells from the marine mussel (Mytilus galloprovincialis Lam.) By immunoelectron microscopy. In control digestive cells, EGFR immunoreactivity was mainly associated with cytoplasmic membrane structures and, to a lesser extent, the cell membrane. The presence of EGFR-like receptors was confirmed by Western blotting of digestive gland cell extracts with two different monoclonal antibodies that recognize either intracellular or extracellular epitopes. The addition of mammalian EGF resulted in significant time and temperature-dependent changes in EGFR subcellular distribution in mussel cells. In cells exposed to EGF for 0-15 min at 4 degrees C, the distribution of EGFR was not significantly different from that of the control cells. On the other hand, at 18 degrees C, an increased labelling along the cell membrane was observed after 5-10 min after EGF addition, with a concomitant decrease in the cytoplasmic signal. Moreover, after 20 min of exposure to EGF, ligand binding apparently resulted in EGFR compartmentation within the lysosomes. These observations were confirmed by quantitative analysis of EGFR labelling at different times of EGF exposure. Similar results were obtained utilizing the two different monoclonal antibodies. The results indicate that, in mussel digestive cells, the binding of heterologous EGF to specific receptors induces a negative feedback response by stimulating the lysosomal degradation of EGFR, thus suggesting the presence of mechanisms responsible for receptor downregulation similar to those observed in mammalian cells.  相似文献   

18.
Gain- and loss-of-function studies indicate that the adherens junction protein shrew-1 acts as a novel modulator of E-cadherin internalization induced by epithelial growth factor (EGF) or E-cadherin function-blocking antibody during epithelial cell dynamics. Knocking down shrew-1 in MCF-7 carcinoma cells preserves E-cadherin surface levels upon EGF stimulation. Overexpression of shrew-1 leads to preformation of an E-cadherin/EGF receptor (EGFR) HER2/src-kinase/shrew-1 signaling complex and accelerated E-cadherin internalization. Shrew-1 is not sufficient to stimulate E-cadherin internalization, but facilitates the actions of EGFR and thus may promote malignant progression in breast cancer cells with constitutive EGFR stimulation by reducing surface E-cadherin expression.  相似文献   

19.
Balanced activity of protein tyrosine kinases and phosphatases (PTPs) controls tyrosine phosphorylation levels and, consequently, is needed to prevent pathologies like cancer. Phosphatase activity is tightly regulated in space and time. Thus, in order to understand how phospho-tyrosine signalling is regulated, the intracellular dynamics of PTPs should be investigated. Here, we have studied the intracellular dynamics of PTPD1, a FERM (four-point-one, ezrin, radixin, moesin) domain-containing PTP that is over expressed in cancer cells and potentiates EGFR signalling. Whereas PTPD1 was excluded from E-cadherin rich cell-cell adhesions in epithelial cell monolayers, it diffused from the cytoplasm to those membranes in contact with the extracellular medium. Localisation of PTPD1 at the plasma membrane was mediated by its FERM domain and enabled the formation of EGFR/PTPD1-containing signalling complexes that pre-existed at the plasma membrane before EGF stimulation. PTPD1 and EGFR transiently co-localised at EGF stimulation sites until the formation of macropinosomes containing active species of EGFR. Interference of PTPD1 expression caused a decrease in EGFR phosphorylated species at the periphery of the cell. Presented data suggest that the transient formation of dynamic PTPD1/EGFR signalling complexes strengthens EGF signalling by promoting the spatial propagation of EGFR phosphorylated species.  相似文献   

20.
IQGAP1 and calmodulin modulate E-cadherin function   总被引:4,自引:0,他引:4  
Ca(2+)-dependent cell-cell adhesion is mediated by the cadherin family of transmembrane proteins. Adhesion is achieved by homophilic interaction of the extracellular domains of cadherins on adjacent cells, with the cytoplasmic regions serving to couple the complex to the cytoskeleton. IQGAP1, a novel RasGAP-related protein that interacts with the cytoskeleton, binds to actin, members of the Rho family, and E-cadherin. Calmodulin binds to IQGAP1 and regulates its association with Cdc42 and actin. Here we demonstrate competition between calmodulin and E-cadherin for binding to IQGAP1 both in vitro and in a normal cellular milieu. Immunocytochemical analysis in MCF-7 (E-cadherin positive) and MDA-MB-231 (E-cadherin negative) epithelial cells revealed that E-cadherin is required for accumulation of IQGAP1 at cell-cell junctions. The cell-permeable calmodulin antagonist CGS9343B significantly increased IQGAP1 at areas of MCF-7 cell-cell contact, with a concomitant decrease in the amount of E-cadherin at cell-cell junctions. Analysis of E-cadherin function revealed that CGS9343B significantly decreased homophilic E-cadherin adhesion. On the basis of these data, we propose that disruption of the binding of calmodulin to IQGAP1 enhances the association of IQGAP1 with components of the cadherin-catenin complex at cell-cell junctions, resulting in impaired E-cadherin function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号