首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
2.
Molecular clones complementary to the mRNA species for the A, B1 and B2 chains of murine laminin were identified by hybrid-selection and in vitro translation. Northern blot analysis demonstrated that the three clones, p59 (A), p2 (B1) and p16 (B2) hybridized to mRNA species 9.8, 6.0, and 8.0 kb in length, respectively. The three clones were used as probes to monitor the steady-state levels of laminin mRNA species during differentiation of F9 embryonal carcinoma cells induced by treatment with retinoic acid and dibutyryl cyclic AMP. The steady-state levels of the three mRNA species appeared to increase in a coordinate manner. Undetectable levels at the beginning of induction were followed by a dramatic increase in the levels of the three mRNA species between 48 and 72 h. The kinetics parallel the increase in laminin synthesis and the striking morphological changes previously reported.  相似文献   

3.
F9 teratocarcinoma cells contain a cellular retinoic acid-binding protein (CRABP) that may mediate the retinoic acid-induced differentiation of this cell line. Specific [3H]retinoic acid binding to CRABP in F9 stem cell cytosol is protein-dependent, reaches equilibrium within 4 h at 4 degrees C, and yields 643 +/- 105 fmol of [3H]retinoic acid per mg of protein with an apparent dissociation constant of 9.2 +/- 1.1 nM. When F9 stem cells are grown in the presence of either dibutyryl cyclic AMP or sodium butyrate, CRABP activity is stimulated 2-4-fold. The effect of these drugs on CRABP activity is both time and concentration-dependent, resulting in an increase in the number of binding sites for [3H]retinoic acid with no change in their affinity. The new [3H]retinoic acid-binding sites have a sedimentation coefficient of 2 S and are not displaced by excess retinol. When F9 stem cells are grown in the presence of cyclic 8-bromo-AMP or cholera toxin, no increase in CRABP activity is observed. We conclude that the stimulation of CRABP activity by dibutyryl cyclic AMP may result from the action of butyrate. In addition, the stimulation of retinoic acid-induced F9 cell differentiation by cyclic AMP analogs (Strickland, S., Smith, K.K., and Marotti, K.R. (1980) Cell 21, 347-355) and the inhibition of this differentiation by butyrate (Levine R. A., Campisi, J., Wang, S.-Y., and Gudas, L. J. (1984) Dev. Biol. 105, 443-450) are not correlated with increases or decreases, respectively, in the level of CRABP activity.  相似文献   

4.
5.
F9 embryonal mouse teratocarcinoma cells were differentiated to a primitive endoderm-like phenotype by retinoic acid and to a parietal endoderm-like phenotype by retinoic acid in combination with dibutyryl cyclic AMP. The secretion of tissue plasminogen activator (tPA) is a characteristic of the cells displaying the differentiated phenotypes. The fundamental question of whether tPA secretion is regulated acutely by G-protein-mediated transmembrane signaling was explored. Cells differentiated to primitive and parietal endoderm demonstrated a rapid tPA response to stimulation by beta-adrenergic agonist (isoproterenol). Adenylyl cyclase activity in response to isoproterenol and GTP, but not forskolin, was greater in primitive and parietal endoderm than F9 stem cells. Both primitive and parietal endoderm cells, but not F9 stem cells, displayed beta-adrenergic stimulation of cyclic AMP accumulation. Retinoic acid induced F9 stem cells to the primitive endoderm phenotype and increased beta-adrenergic receptor levels 3-fold. Gi alpha 2 levels declined, G beta-subunits increased, and Gs alpha levels were unchanged following differentiation to primitive endoderm. In parietal endoderm cells beta-adrenergic receptors increased 2-fold over F9 stem cells, Gi alpha 2 levels declined even further than in primitive endoderm, G beta-subunits increased compared to F9 stem cells, and Gs alpha levels again were unchanged. The marked potentiation of short-term stimulation of tPA secretion in the differentiated state may be best explained by the retinoic acid-induced increase in expression of beta-adrenergic receptors coupled with a decline in Gi alpha 2 levels. Short-term regulation by G-protein-linked receptors represents a novel mode for the control of tPA secretion.  相似文献   

6.
A cDNA clone related to mouse Type IV collagen has been prepared from F9 teratocarcinoma cells induced to differentiate with retinoic acid and dibutyryl-cAMP. This cDNA clone has been used to investigate the regulation of Type IV collagen mRNA during differentiation. The level of this mRNA is very low in untreated F9 cells, increases substantially after treatment of the cells with retinoic acid, and is further increased by addition of dibutyryl-cAMP. In contrast, dibutyryl-cAMP has no effect on the mRNA level in cells that have not been previously exposed to retinoic acid. These results demonstrate that these two compounds regulate in a sequential manner the steady-state level of Type IV collagen mRNA. This cDNA clone should allow a detailed examination of the mechanism of the two-stage regulation of collagen expression by retinoids and cyclic AMP.  相似文献   

7.
F9 mouse teratocarcinoma stem cells differentiate into parietal endoderm cells in the presence of retinoic acid, dibutyryl cyclic AMP, and theophylline (RACT). When F9 cells are exposed to 2-5 mM sodium butyrate plus RACT, they fail to differentiate. Differentiation is assessed by induction of laminin and collagen IV mRNA, the synthesis of laminin, collagen IV and plasminogen activator proteins, and alterations in cell morphology. Butyrate inhibits differentiation only when added within 8 hr after retinoic acid addition. Thus an early event in retinoid action on F9 cells is butyrate-sensitive. The population doubling time and cell cycle distribution of F9 cells are not altered within the first 24 hr after butyrate addition, suggesting that butyrate does not inhibit differentiation by inhibition of growth or normal cycling. However, butyrate does inhibit histone deacetylation in F9 cells, and this could be the mechanism by which butyrate inhibits differentiation.  相似文献   

8.
9.
10.
11.
12.
13.
14.
Fresh serum and retinoids induce the expression of tissue transglutaminase in cultured mouse resident peritoneal macrophages. Analogues of cyclic AMP, such as dibutyryl cyclic AMP, and agents that increase intracellular cyclic AMP levels enhance the induction. Dibutyryl cyclic AMP alone has little effect on transglutaminase expression, but it increases the sensitivity of macrophages to low concentrations of either serum or retinoic acid. Dibutyryl cyclic AMP potentiates the transglutaminase-inducing activity of both free retinoic acid and retinoic acid bound to the serum retinol-binding protein. Pretreating macrophages with dibutyryl cyclic AMP or retinoic acid does not prime the cells to respond to the other agent; instead, both agents must be present simultaneously to obtain the synergistic induction of transglutaminase. Our studies suggest that the modulation of intracellular cyclic AMP levels may have pronounced effects on retinoic acid-induced gene expression in myeloid cells.  相似文献   

15.
16.
17.
F9 line embryonal carcinoma cells were induced to differentiate into neural direction by long-term treatment of monolayer cultures with retinoic acid and dibutyryl cyclic AMP. Bi- and multi-polar cells appeared, expressing acetylcholinesterase and neurofilament proteins but not markers of glial differentiation including GFA-protein. Nerve growth factor combined with both retinoic acid and dibutyryl cyclic AMP greatly enhanced the development of neuron-like morphology and induced expression of immunoreactivity to tyrosine hydroxylase as well as to Leu-encephalin-like peptides. Similarly, serotonin-like immunofluorescence but not substance P-like immunoreactivity was demonstrable in such cultures. In addition, synaptic-like vesicles were often found in the processes. Analysis of matrix expression in neuronally differentiated F9 cells revealed marked increase in laminin production, as judged by immunofluorescence and immuno-electron microscopy, but no demonstrable intracellular staining for fibronectin or type IV collagen. The results with neuronal cells contrast with the expression of all the three matrix components in endodermally differentiating F9 cells in the same cultures.  相似文献   

18.
19.
Treatment of mouse embryonal carcinoma (F9) cells with retinoic acid, an inducer of F9 cell differentiation, greatly increased the level of mRNA specific to one of the heat-shock proteins (HSP86). Experiments including the one employing differentiation-resistant mutant F9 cells suggested that the increase represents early molecular events associated with the embryonal differentiation. The increased HSP86 mRNA declined to the original level during further incubation. The presence of cyclic AMP, which stimulates conversion of the retinoic acid-induced primitive endoderm cells to parietal endoderm cells, prevented the decline. These results suggest that not only the elevation of HSP86 mRNA level represents early molecular events in F9 cell differentiation but also that sustaining the elevated level (by cyclic AMP) is associated with further differentiation of the embryonal cells.  相似文献   

20.
The effects of dibutyryl cAMP on the differentiation of embryonal carcinoma F9 cells were studied mainly using the secretion of laminin and type IV collagen as the marker. For this purpose, F9 cells were labeled with 35S-methionine and radioactive proteins in the medium were analyzed by SDS-polyacrylamide gel electrophoresis. Treatment of F9 cells with retinoic acid alone induced differentiation into cells secreting type IV collagen. The combination of retinoic acid and dibutyryl cAMP stimulated laminin secretion in addition to type IV collagen secretion. This effect of dibutyryl cAMP was observed only 16 h after adding dibutyryl cAMP. Immunofluorescence staining demonstrated that the majority of the cells in culture were converted into cells secreting laminin under these conditions. In contrast to the irreversible effect of retinoic acid, the effect of dibutyryl cAMP on laminin and type IV collagen secretion was reversible at least during the first 5 days of maintaining cells in the medium containing retinoic acid plus dibutyryl cAMP. Removal of dibutyryl cAMP from the culture medium decreased the protein secretion to the basal levels within 2 days. This reversibility was not due to a change in cell number. An in vitro translation assay also suggested the reversible effect of dibutyryl cAMP on the levels of laminin mRNA. Coinciding with variations of the protein secretion, a reversible and homogeneous change in the morphology of retinoic acid generated F9 cells was observed by dibutyryl cAMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号