首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The density and regulation of microbial populations are important factors in the success of symbiotic associations. High bacterial density may improve transmission to the next generation, but excessive replication could turn out to be costly to the host and result in higher virulence. Moreover, differences in virulence may also depend on the diversity of symbionts. Using the maternally transmitted symbiont Wolbachia, we investigated how bacterial density and diversity are regulated and influence virulence in host insects subject to multiple infection. The model we used was the wasp Asobara tabida that naturally harbors three different Wolbachia strains, of which two are facultative and induce cytoplasmic incompatibility, whereas the third is necessary for the host to achieve oogenesis. Using insect lines infected with different subsets of Wolbachia strains, we show that: (i) some traits of A. tabida are negatively affected by Wolbachia; (ii) the physiological cost increases with the number of co-infecting strains, which also corresponds to an increase in the total bacterial density; and (iii) the densities of the two facultative Wolbachia strains are independent of one another, whereas the obligatory strain is less abundant when it is alone, suggesting that there is some positive interaction with the other strains.  相似文献   

2.
Infection density is among the most important factors for understanding the biological effects of Wolbachia and other endosymbionts on their hosts. To gain insight into the mechanisms of infection density regulation, we investigated the adzuki bean beetles Callosobruchus chinensis and their Wolbachia endosymbionts. Double-infected, single-infected and uninfected host strains with controlled nuclear genetic backgrounds were generated by introgression, and infection densities in these strains were evaluated by a quantitative polymerase chain reaction technique. Our study revealed previously unknown aspects of Wolbachia density regulation: (i) the identification of intra-specific host genotypes that affect Wolbachia density differently and (ii) the suppression of Wolbachia density by co-infecting Wolbachia strains. These findings shed new light on symbiont-symbiont and host-symbiont interactions in the Wolbachia-insect endosymbiosis and strongly suggest that Wolbachia density is determined through a complex interaction between host genotype, symbiont genotype and other factors.  相似文献   

3.
Wolbachia infections are a model for understanding intracellular, bacterial symbioses. While the symbiosis is often studied from a binary perspective of host and bacteria, it is increasingly apparent that additional trophic levels can influence the symbiosis. For example, Wolbachia in arthropods harbor a widespread temperate bacteriophage, termed WO, that forms virions and rampantly transfers between coinfections. Here we test the hypothesis that temperatures at the extreme edges of an insect's habitable range alter bacteriophage WO inducibility and in turn, Wolbachia densities and the penetrance of cytoplasmic incompatibility. We report four key findings using the model wasp, Nasonia vitripennis: First, both cold treatment at 18 C and heat treatment at 30 C reduce Wolbachia densities by as much as 74% relative to wasps reared at 25 C. Second, in all cases where Wolbachia densities decline due to temperature changes, phage WO densities increase and inversely associate with Wolbachia densities. Heat has a marked effect on phage WO, yielding phage densities that are 552% higher than the room temperature control. Third, there is a significant affect of insect family on phage WO and endoysmbiont densities. Fourth, at extreme temperatures, there was a temperature-mediated adjustment to the density threshold at which Wolbachia cause complete cytoplasmic incompatibility. Taken together, these results demonstrate that temperature simultaneously affects phage WO densities, endosymbiont densities, and the penetrance of cytoplasmic incompatibility. While temperature shock enhances bacteriophage inducibility and the ensuing bacterial mortality in a wide range of medically and industrially-important bacteria, this is the first investigation of the associations in an obligate intracellular bacteria. Implications to a SOS global sensing feedback mechanism in Wolbachia are discussed.  相似文献   

4.
Duron O  Fort P  Weill M 《Heredity》2007,98(6):368-374
Wolbachia are maternally inherited endocellular bacteria, widespread in invertebrates and capable of altering several aspects of host reproduction. Cytoplasmic incompatibility (CI) is commonly found in arthropods and induces hatching failure of eggs from crosses between Wolbachia-infected males and uninfected females (or females infected by incompatible strains). Several factors such as bacterial and host genotypes or bacterial density contribute to CI strength and it has been proposed, mostly from Drosophila data, that older males have a lower Wolbachia load in testes which, thus, induces a lighter CI. Here, we challenge this hypothesis using different incompatible Culex pipiens mosquito strains and show that CI persists at the same intensity throughout the mosquito life span. Embryos from incompatible crosses showed even distributions of abortive phenotypes over time, suggesting that host ageing does not reduce the sperm-modification induced by Wolbachia. CI remained constant when sperm was placed in the spermathecae of incompatible females, indicating that sperm modification is also stable over time. The capacity of infected females to rescue CI was independent of age. Last, the density of Wolbachia in whole testes was highly strain-dependent and increased dramatically with age. Taken together, these data stress the peculiarity of the C.pipiens/Wolbachia interaction and suggest that the bacterial dosage model should be rejected in the case of this association.  相似文献   

5.
【目的】Wolbachia是广泛存在于节肢动物体内的一类母系遗传的共生菌, 能够通过多种机制调节节肢动物的生殖。近年来, 为了更进一步地探究Wolbachia与寄主之间的互作机制, 许多研究者展开了Wolbachia的人工转染研究。【方法】我们在实验室条件下将灰飞虱Laodelphax striatellus (Fallén)感染的Wolbachia提取纯化后, 利用显微注射的方法导入豆叶螨Tetranychus phaselus Ehara体内。研究了注入从灰飞虱提取的Wolbachia和豆叶螨自然感染Wolbachia对豆叶螨繁殖适合度和寿命的影响, 并测定了两种Wolbachia的密度随豆叶螨日龄增长的变化情况。【结果】结果显示, 外源Wolbachia在豆叶螨体内的拷贝数极低, 仅为自然感染豆叶螨体内Wolbachia拷贝数的0.5%左右。与自然感染的Wolbachia不同, 外源Wolbachia在豆叶螨种群中不能引起胞质不亲和, 但能够显著降低雌螨的产卵量。【结论】本研究表明, 来自灰飞虱的Wolbachia具有抑制豆叶螨种群扩张的潜在能力, 对豆叶螨生物防治具有一定的应用价值。  相似文献   

6.
Nine resistant processing tomato (Lycopersicon esculentum) cultivars and advanced lines were compared with four susceptible cultivars in 1,3-dichloropropene-fumigated and nontreated plots on Meloidogyne incognita-infested sites over 3 years. Yield of all resistant genotypes grown in nontreated and nematicide-treated plots did not differ and was greater than yield of susceptible genotypes. M. incognita initial soil population densities caused 39.3-56.5% significant (P = 0.05) yield suppressions of susceptible genotypes. Nematode injury to susceptible plants usually caused both fruit soluble solids content and pH to increase significantly (P = 0.05). Only trace nematode reproduction occurred on resistant genotypes in nontreated plots, whereas large population density increases occurred on susceptible genotypes. Slightly greater nematode reproduction occurred on resistant genotypes at the southern desert location, where soil temperature exceeded 30 C, than at other locations. At two locations resistant MOX 3076 supported greater reproduction than other resistant genotypes.  相似文献   

7.
Transferring endosymbiotic bacteria between different host species can perturb the coordinated regulation of the host and bacterial genomes. Here we use the most common maternally transmitted bacteria, Wolbachia pipientis, to test the consequences of host genetic background on infection densities and the processes underlying those changes in the parasitoid wasp genus Nasonia. Introgressing the genome of Nasonia giraulti into the infected cytoplasm of N. vitripennis causes a two-order-of-magnitude increase in bacterial loads in adults and a proliferation of the infection to somatic tissues. The host effect on W. pipientis distribution and densities is associated with a twofold decrease in densities of the temperate phage WO-B. Returning the bacteria from the new host species back to the resident host species restores the bacteria and phage to their native densities. To our knowledge, this is the first study to report a host-microbe genetic interaction that affects the densities of both W. pipientis and bacteriophage WO-B. The consequences of the increased bacterial density include a reduction in fecundity, an increase in levels of cytoplasmic incompatibility (CI), and unexpectedly, male-to-female transfer of the bacteria to uninfected females and an increased acceptance of densely infected females to interspecific mates. While paternal inheritance of the W. pipientis was not observed, the high incidence of male-to-female transfer in the introgressed background raises the possibility that paternal transmission could be more likely in hybrids where paternal leakage of other cytoplasmic elements is also known to occur. Taken together, these results establish a major change in W. pipientis densities and tissue tropism between closely related species and support a model in which phage WO, Wolbachia, and arthropods form a tripartite symbiotic association in which all three are integral to understanding the biology of this widespread endosymbiosis.  相似文献   

8.
We investigated the interactions between the endosymbionts Wolbachia pipientis strain wMel and Spiroplasma sp. strain NSRO coinfecting the host insect Drosophila melanogaster. By making use of antibiotic therapy, temperature stress, and hemolymph microinjection, we established the following strains in the same host genetic background: the SW strain, infected with both Spiroplasma and Wolbachia; the S strain, infected with Spiroplasma only; and the W strain, infected with Wolbachia only. The infection dynamics of the symbionts in these strains were monitored by quantitative PCR during host development. The infection densities of Spiroplasma exhibited no significant differences between the SW and S strains throughout the developmental course. In contrast, the infection densities of Wolbachia were significantly lower in the SW strain than in the W strain at the pupal and young adult stages. These results indicated that the interactions between the coinfecting symbionts were asymmetrical, i.e., Spiroplasma organisms negatively affected the population of Wolbachia organisms, while Wolbachia organisms did not influence the population of Spiroplasma organisms. In the host body, the symbionts exhibited their own tissue tropisms: among the tissues examined, Spiroplasma was the most abundant in the ovaries, while Wolbachia showed the highest density in Malpighian tubules. Strikingly, basically no Wolbachia organisms were detected in hemolymph, the principal location of Spiroplasma. These results suggest that different host tissues act as distinct microhabitats for the symbionts and that the lytic process in host metamorphosis might be involved in the asymmetrical interactions between the coinfecting symbionts.  相似文献   

9.
Organisms and the symbionts they harbor may experience opposing forces of selection. In particular, the contrasting inheritance patterns of maternally transmitted symbionts and their host's nuclear genes can engender conflict among organizational levels over the optimal host offspring sex ratio. This study uses a male-killing Wolbachia endosymbiont and its host Drosophila innubila to experimentally address the potential for multilevel selection in a host-symbiont system. We show that bacterial density can vary among infected females, and that females with a higher density have a more female-biased offspring sex ratio. Furthermore, bacterial density is an epigenetic and heritable trait: females with a low bacterial load have daughters with a lower-than-average bacterial density, whose offspring then experience less severe male-killing. For infected sons, the probability of embryonic mortality increases with the bacterial density in their mothers. The frequency distribution of Wolbachia density among individual D. innubila females, and therefore the dynamics of infection within populations of these flies, results both from processes affecting the growth and regulation of bacterial populations within cytoplasmic lineages and from selection among cytoplasmic lineages that vary in bacterial density. Estimates of effective population size of Wolbachia within cytoplasmic lineages and of D. innubila at the host population level suggest that selection among cytoplasmic lineages is likely to overwhelm the results of selection within lineages.  相似文献   

10.
Wolbachia endosymbiotic bacteria are widespread in filarial nematodes and are directly involved in the immune response of the host. In addition, antibiotics which disrupt Wolbachia interfere with filarial nematode development thus, Wolbachia provide an excellent target for control of filariasis. A 63.1 kb bacterial artificial chromosome insert, from the Wolbachia endosymbiont of the human filarial parasite Brugia malayi, has been sequenced using the New England Biolabs Inc. Genome Priming System() transposition kit in conjunction with primer walking methods. The bacterial artificial chromosome insert contains approximately 57 potential ORFs which have been compared by individual protein BLAST analysis with the 35 published complete microbial genomes in the Comprehensive Microbial Resource database at The Institute for Genomic Research and in the NCBI GenBank database, as well as to data from 22 incomplete genomes from the DOE Joint Genome Institute. Twenty five of the putative ORFs have significant similarity to genes from the alpha-proteobacteria Rickettsia prowazekii, the most closely related completed genome, as well as to the newly sequenced alpha-proteobacteria endosymbiont Sinorhizobium meliloti. The bacterial artificial chromosome insert sequence however has little conserved synteny with the R. prowazekii and S. meliloti genomes. Significant sequence similarity was also found in comparisons with the currently available sequence data from the Wolbachia endosymbiont of Drosophila melanogaster. Analysis of this bacterial artificial chromosome insert provides useful gene density and comparative genomic data that will contribute to whole genome sequencing of Wolbachia from the B. malayi host. This will also lead to a better understanding of the interactions between the endosymbiont and its host and will offer novel approaches and drug targets for elimination of filarial disease.  相似文献   

11.
Wolbachia are endosymbiotic bacteria known to manipulate the reproduction of their hosts. Some populations of the parasitoid wasp Asobara japonica are infected with Wolbachia and reproduce parthenogenetically, while other populations are not infected and reproduce sexually. Wolbachia-infected A. japonica females regularly produce small numbers of male offspring. Because all females in the field are infected and infected females are not capable of sexual reproduction, male production seems to be maladaptive. We investigated why these females nevertheless produce males. We tested three hypotheses: high rearing temperatures could result in higher offspring sex ratios (more males), low Wolbachia titer of the mother could lead to higher offspring sex ratios and/or the Wolbachia infection is of relatively recent origin and not enough time has passed to allow complete coadaptation between Wolbachia and host. In all, 33% of the Wolbachia-infected females produced males and 56% of these males were also infected with Wolbachia. Neither offspring sex ratio nor male infection frequency was significantly affected by rearing temperature or Wolbachia concentration of the mother. The mitochondrial DNA sequence of one of the uninfected populations was identical to that of two of the infected populations. Therefore, the initial Wolbachia infection of A. japonica must have occurred recently. Mitochondrial sequence variation among the infected populations suggests that the spread of Wolbachia through the host populations involved horizontal transmission. We conclude that the occasional male production by Wolbachia-infected females is most likely a maladaptive side effect of incomplete coevolution between symbiont and host in this relatively young infection.  相似文献   

12.
Wolbachia are endosymbionts that are found in many insect species and can spread rapidly when introduced into a naive host population. Most Wolbachia spread when their infection frequency exceeds a threshold normally calculated using purely population genetic models. However, spread may also depend on the population dynamics of the insect host. We develop models to explore interactions between host population dynamics and Wolbachia infection frequency for an age-structured insect population regulated by larval density dependence. We first derive a new expression for the threshold frequency that extends existing theory to incorporate important details of the insect's life history. In the presence of immigration and emigration, the threshold also depends on the form of density-dependent regulation. We show how the type of immigration (constant or pulsed) and the temporal dynamics of the host population can strongly affect the spread of Wolbachia. The results help understand the natural dynamics of Wolbachia infections and aid the design of programs to introduce Wolbachia to control insects that are disease vectors or pests.  相似文献   

13.
The Mediterranean flour moth, Ephestia kuehniella, is infected with A-group Wolbachia (wKue), and the almond moth, Cadra cautella, is doubly infected with A- and B-group Wolbachia, which are designated as wCauA and wCauB, respectively. In both insects, the Wolbachia populations increased greatly during embryonic and larval stages. The Wolbachia population doubled every 3.6 days on average in E. kuehniella larvae, whereas those of wCauA and wCauB doubled every 2.1 days in C. cautella larvae. The populations of wCauA and wCauB that had been transferred into the E. kuehniella background increased at similar rates to that of wKue in the natural host E. kuehniella, suggesting that the host genetic background influences Wolbachia proliferation. To examine whether the populations of the two Wolbachia variants in double infection is regulated collectively or independently, we measured the infection load in the ovaries of three transfected E. kuehniella lines in different infection states: single infection with wCauA, single infection with wCauB, and double infection. The density of each Wolbachia variant did not differ significantly between the singly and doubly transfected hosts, suggesting independent regulation.  相似文献   

14.
Inherited microorganisms that disturb the reproduction of their host have been characterized from a number of host taxa. To understand the general principles underlying the genetic and mechanistic basis of interactions, study of different agents in model host species is required. To this end, the nature and genetics of the maternally inherited sex-ratio trait of Drosophila bifasciata were investigated. Successful curing of affected lines with antibiotics demonstrated this trait was associated with the presence of a bacterium, and molecular systematic analysis demonstrated an association between the presence of the trait and infection with an A group Wolbachia. The penetrance and heritability of the trait did not vary with maternal age. Exposure to elevated temperatures did reduce trait penetrance but did not affect heritability. Examination of the effect of temperature on bacterial density in eggs revealed a decrease in bacterial density following exposure of the parent to elevated temperature, consistent with the hypothesis that male killing in D. bifasciata requires a threshold density of Wolbachia within eggs. The male offspring produced following exposure to elevated temperatures were infected with Wolbachia on emergence as adults. Crossing studies demonstrated a weak cytoplasmic incompatibility phenotype exhibited by Wolbachia in these males. The results are discussed with respect to the incidence of male killing within the clade Wolbachia, the general nature of Wolbachia-host interactions, and the prospects for using this association to investigate the mechanism of male killing.  相似文献   

15.
High and low levels of Wolbachia-induced cytoplasmic incompatibility (CI) were selected for in the parasitic wasp Nasonia vitripennis, in the single-infected strain Ti277. After nine generations of selection, males from lines selected for high incompatibility level (HI lines) were significantly more incompatible with uninfected females (AsymC) than the maternal strain. The reverse response, a full compatibility with AsymC, was observed in eight out of 12 lines selected for low incompatibility (LO lines), correlated with loss of Wolbachia infection. Bacterial density estimates in the eggs of some HI lines increased significantly. The procedure for line maintenance resulted in introgression of AsymC nuclear genome into the Ti277 background. Significant changes of CI level and bacterial density due to the introgression were also observed in the control lines, possibly reflecting an effect of host genotype on bacterial density and CI. After selection had been relaxed for six generations, bacterial density in the five high-infected HI lines declined back to a level comparable to the other lines. The data are consistent with the ‘bacterial dosage’ model, but with an upper threshold of bacterial infection above which there is no correlation between infection level and CI level. We further investigate the maternal transmission of bacterial density by a mother–daughter regression on bacterial density. The pattern observed is consistent with a density dependent regulation of bacterial numbers around an ‘equilibrium’ density, independent of any effects of CI. The equilibrium value is likely to be determined by both bacterial strain and host genotype.  相似文献   

16.
By manipulating arthropod reproduction worldwide, the heritable endosymbiont Wolbachia has spread to pandemic levels. Little is known about the microbial basis of cytoplasmic incompatibility (CI) except that bacterial densities and percentages of infected sperm cysts associate with incompatibility strength. The recent discovery of a temperate bacteriophage (WO-B) of Wolbachia containing ankyrin-encoding genes and virulence factors has led to intensifying debate that bacteriophage WO-B induces CI. However, current hypotheses have not considered the separate roles that lytic and lysogenic phage might have on bacterial fitness and phenotype. Here we describe a set of quantitative approaches to characterize phage densities and its associations with bacterial densities and CI. We enumerated genome copy number of phage WO-B and Wolbachia and CI penetrance in supergroup A- and B-infected males of the parasitoid wasp Nasonia vitripennis. We report several findings: (1) variability in CI strength for A-infected males is positively associated with bacterial densities, as expected under the bacterial density model of CI, (2) phage and bacterial densities have a significant inverse association, as expected for an active lytic infection, and (3) CI strength and phage densities are inversely related in A-infected males; similarly, males expressing incomplete CI have significantly higher phage densities than males expressing complete CI. Ultrastructural analyses indicate that approximately 12% of the A Wolbachia have phage particles, and aggregations of these particles can putatively occur outside the Wolbachia cell. Physical interactions were observed between approximately 16% of the Wolbachia cells and spermatid tails. The results support a low to moderate frequency of lytic development in Wolbachia and an overall negative density relationship between bacteriophage and Wolbachia. The findings motivate a novel phage density model of CI in which lytic phage repress Wolbachia densities and therefore reproductive parasitism. We conclude that phage, Wolbachia, and arthropods form a tripartite symbiotic association in which all three are integral to understanding the biology of this widespread endosymbiosis. Clarifying the roles of lytic and lysogenic phage development in Wolbachia biology will effectively structure inquiries into this research topic.  相似文献   

17.
Wolbachia bacteria are obligate intracellular alpha-Proteobacteria of arthropods and nematodes. Although widespread among isopod crustaceans, they have seldom been found in non-isopod crustacean species. Here, we report Wolbachia infection in fourteen new crustacean species. Our results extend the range of Wolbachia infections in terrestrial isopods and amphipods (class Malacostraca). We report the occurrence of two different Wolbachia strains in two host species (a terrestrial isopod and an amphipod). Moreover, the discovery of Wolbachia in the goose barnacle Lepas anatifera (subclass Thecostraca) establishes Wolbachia infection in class Maxillopoda. The new bacterial strains are closely related to B-supergroup Wolbachia strains previously reported from crustacean hosts. Our results suggest that Wolbachia infection may be much more widespread in crustaceans than previously thought. The presence of related Wolbachia strains in highly divergent crustacean hosts suggests that Wolbachia endosymbionts can naturally adapt to a wide range of crustacean hosts. Given the ability of isopod Wolbachia strains to induce feminization of genetic males or cytoplasmic incompatibility, we speculate that manipulation of crustacean-borne Wolbachia bacteria might represent potential tools for controlling crustacean species of commercial interest and crustacean or insect disease vectors.  相似文献   

18.
Shrimp is one of few marine species cultured worldwide for which several selective breeding programs are being conducted. One environmental factor that can affect the response to selection in breeding programs is the density at which the shrimp are cultured (low-medium-high). Phenotypic plasticity in the growth response to different densities might be accompanied by a significant genotype by environment interaction, evidenced by a change in heritabilities between environments and by a genetic correlation less than one for a unique trait between environments. Our goal was to understand whether different growth densities affect estimates of those genetic parameters for adult body weight (BW) in the Pacific white shrimp (Penaeus vannamei). BW heritabilities were significantly different between environments, with the largest at high density. These differences resulted from both an increased additive genetic variance and a decreased environmental variance when grown at high density. The genetic correlation between BWs at the two environmental conditions was significantly less than one. Whereas these results might be suggestive for carrying out shrimp selective breeding for BW under high density conditions, further understanding of genetic correlations between growth and reproductive traits within a given environment is necessary, as there are indications of reduced reproductive fitness for shrimp grown at high densities.  相似文献   

19.
Vertically transmitted symbionts suffer a severe reduction in numbers when they pass through host generations, resulting in genetic homogeneity or even clonality of their populations. Wolbachia endosymbionts that induce cytoplasmic incompatibility in their hosts depart from this rule, because cytoplasmic incompatibility actively maintains multiple infection within hosts. Hosts and symbionts are thus probably under peculiar selective pressures that must shape the way intracellular bacterial populations are regulated. We studied the density and location of Wolbachia within adult Leptopilina heterotoma, a haplodiploid wasp that is parasitic on Drosophila and that is naturally infected with three Wolbachia strains, but for which we also obtained one simply infected and two doubly infected lines. Comparison of these four lines by quantitative polymerase chain reaction using a real-time detection system showed that total Wolbachia density varies according to the infection status of individuals, while the specific density of each Wolbachia strain remains constant regardless of the presence of other strains. This suggests that Wolbachia strains do not compete with one another within the same host individual, and that a strain-specific regulatory mechanism is operating. We discuss the regulatory mechanisms that are involved, and how this process might have evolved as a response to selective pressures acting on both partners.  相似文献   

20.
Wolbachia bacteria are intracellular parasites, vertically transmitted from mothers to offspring through the cytoplasm of the eggs. They manipulate the reproduction of their hosts to increase in frequency in host populations. In terrestrial isopods for example, Wolbachia are responsible for the full feminization of putative males, therefore increasing the proportion of females, the sex by which they are transmitted. Vertical transmission, however, is not the only means for Wolbachia propagation. Infectious (i.e., horizontal) transmission between different host species or taxa is required to explain the fact that the phylogeny of Wolbachia does not parallel that of their hosts. The aim of this study was to investigate, by experimental transinfections, whether Wolbachia strains could be successfully transferred to a different, previously uninfected isopod host. While Wolbachia survived in all the studied recipient species, vertical transmission was efficient only in cases where donor and recipient species were closely related. Even in this case, Wolbachia strains did not always keep their ability to entirely feminize their host, a deficiency that can be link to a low bacterial density in the host tissues. In addition, Wolbachia infection was associated with a decrease in host fertility, except when the bacterial strain came from the same host population as the recipient animals. This suggest that Wolbachia could be adapted to local host populations. It therefore seems that isopod Wolbachia are highly adapted to their host and can hardly infect another species of hosts. The successful infection of a given Wolbachia strain into a new isopod host species therefore probably requires a strong selection on bacterial variants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号