首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple, rapid procedure for dual staining of cartilage and bone in rodents, particularly in late gestation, has been developed for routine use. The procedure involves rapid, complete skinning of fresh eviscerated specimens following a 30 sec immersion in a 70 C water bath. The unfixed specimen is stained in a mixture of 0.14% Alcian blue and 0.12% alizarin red S in ethanol and glacial acetic acid. Specimens are then macerated in 2% KOH, cleared and hardened in 1:1 glycerin and distilled water, and stored in pure glycerin. Rapid staining of cartilage only is done in a mixture of 0.08% Alcian blue, glacial acetic acid, and ethanol, with subsequent maceration, clearing, and hardening as in the double staining procedure. Rapid staining of bone only, concurrent with maceration of soft tissue, can be done by placing fresh, unskinned specimens in a diluted mixture of alizarin red S in 2% KOH, with subsequent clearing and hardening in 1:1 distilled water and glycerin. Good quality fetal specimens can be prepared for examination by any of these procedures in a minimum of 11/2-2 days as compared to a minimum of 4-5 days for other procedures. Double stained specimens can be examined for abnormalities of the cartilage as well as bone.  相似文献   

2.
A novel staining technique has been devised that permits a cartilage examination of unskinned fetal rats that have been previously processed for skeletal examination with alizarin red S. The procedure consists of rinsing alizarin red S-stained specimens in distilled water and placing the specimens in a 3% acetic acid solution. A transfer of the stain from bone to adjacent cartilage occurs, producing purple-stained cartilaginous structures that can be differentiated from still-discernible bone structures.  相似文献   

3.
Historically, some fetuses for regulatory developmental toxicity studies have been stained with alizarin red S and cleared with glycerol to visualize the ossified portion of their skeletons. Interest in examining cartilage arose owing to its inclusion in some regulatory guidelines. Methods for double staining rat skeletons have been published previously. The method described here for staining mouse skeletons is fully automated and uses alizarin red S to stain bone and Alcian blue to stain cartilage. Pregnant mice (Crl:CD1) were euthanized on gestation day 18 to obtain fetal specimens. Day 0 post-partum mouse pups also were stained. Our method was developed using the Shandon Pathcentre , which is a fully enclosed automated staining system that allows staining to be carried out at 30° C with a final clearing at 35° C. Our method uses the same solutions as for fetal rat processing, but with reduced time periods for the smaller size of mice vs. rat specimens. Staining, maceration and clearing of the specimens requires approximately 2 days. The time required of laboratory personnel, however, is minimal, because all solutions are changed automatically and the specimens do not require examination or removal from the processor until processing is complete. After processing, the specimens are suitable for immediate assessment of bone and cartilage. A mouse developmental toxicity study using 20 animals/group and approximately 10 fetuses/animal could be processed in only three runs using one machine.  相似文献   

4.
Traditionally, cartilage is stained by alcian blue using acidic conditions to differentiate tissue staining. The acidic conditions are problematic when one wishes to stain the same specimen for mineralized bone with alizarin red, because acid demineralizes bone, which negatively affects bone staining. We have developed an acid-free method to stain cartilage and bone simultaneously in zebrafish larvae. This method has the additional advantage that PCR genotyping of stained specimens is possible.  相似文献   

5.
Fixation in formol-acetic-alcohol as a prelude to the staining of whole mount vertebrate skeletons with alcian blue and alizarin red S has greatly facilitated the enzyme clearing step of the method outlined by Dingerkus and Uhler. The modified method has been tested on fetal and neonatal mice, and on a variety of vertebrates including bony fish, reptiles, amphibia and birds, and shown to be rapid, reproducible and permanent. The method is not so rapid as that reported by Kimmel and Trammell but is superior at least in certain circumstances. In the present study, optimal results were obtained by fixing in formol-acetic-alcohol for 40 minutes, staining cartilage with alcian blue 8GX, then clearing with trypsin. The time taken to complete the latter step was reduced significantly by incubation at 37 C. The next step was to stain bone using alizarin red S in a weak solution of potassium hydroxide, followed by clearing in a potassium hydroxide-glycerol series.  相似文献   

6.
Fixation in formol-acetic-alcohol as a prelude to the staining of whole mount vertebrate skeletons with alcian blue and alizarin red S has greatly facilitated the enzyme clearing step of the method outlined by Dingerkus and Uhler. The modified method has been tested on fetal and neonatal mice, and on a variety of vertebrates including bony fish, reptiles, amphibia and birds, and shown to be rapid, reproducible and permanent. The method is not so rapid as that reported by Kimmel and Trammell but is superior at least in certain circumstances. In the present study, optimal results were obtained by fixing in formol-acetic-alcohol for 40 minutes, staining cartilage with alcian blue 8GX, then clearing with trypsin. The time taken to complete the latter step was reduced significantly by incubation at 37 C. The next step was to stain bone using alizarin red S in a weak solution of potassium hydroxide, followed by clearing in a potassium hydroxide-glycerol series.  相似文献   

7.
This report presents a simple procedure for staining 1-2 μm epoxy plastic sections of cells and mineralizing matrix present in fetal bovine bone tissue cultures. A 0.3% aqueous toluidine blue 0 solution was used as a cellular stain and was followed with 2% alizarin red S for the detection of calcium at sites of mineralition. Effects of concentration and pH of alizarin red S on the penetration of epon embedded thick sections were investigated Optimal staining was achieved with a 2% aqueous alizarin red S solution adjusted to a pH of 5.5-6.5. This staining procedure provides unusually clear contrast between mineral and bone cells in plastic sections for light microscopy.  相似文献   

8.
This report presents a simple procedure for staining 1-2 microns epoxy plastic sections of cells and mineralizing matrix present in fetal bovine bone tissue cultures. A 0.3% aqueous toluidine blue O solution was used as a cellular stain and was followed with 2% alizarin red S for the detection of calcium at sites of mineralization. Effects of concentration and pH of alizarin red S on the penetration of epon embedded thick sections were investigated. Optimal staining was achieved with a 2% aqueous alizarin red S solution adjusted to a pH of 5.5-6.5. This staining procedure provides unusually clear contrast between mineral and bone cells in plastic sections for light microscopy.  相似文献   

9.
Assessment of chemicals for their potential to cause developmental toxicity must include evaluation of the development of the fetal skeleton. The method described here is an improved and fully automated double staining method using alizarin red S to stain bone and alcian blue to stain cartilage. The method was developed on the enclosed Shandon PathcentreTM, and the quality of specimens reported here will be reproduced only if carried out on a similar processor under the same environmental conditions. The staining, maceration and clearing process takes approximately 6 days. The personnel time, however, is minimal since solutions are changed automatically and the fetuses are not examined or removed from the processor until the procedure is completed. Upon completion of processing, the bone and cartilage assessment of the specimens can be carried out immediately if required. Full evaluation of skeletal development in both the rat and the rabbit is necessary to meet the requirements of safety assessment studies. This method allows this to be accomplished on a large scale with consistently clear specimens and in a realistic time.  相似文献   

10.
This paper describes a modification of the Simons and Van Horn (1971) procedure for rendering cartilage blue, bone red, and soft tissue translucent or transparent in whole vertebrate specimens. Alcian blue and alizarin red S are used to stain cartilage and bone respectively. In our procedure formalin is used as a fixative. This is a significant modification because formalin is the common fixative for museum specimens. This clearing and staining procedure is thus readily applicable to comparative studies in anatomy, embryology and systematic zoology.  相似文献   

11.
This technic has been successfully employed by the author for staining, in toto, the bones and cartilage of mature specimens of Urodela and the developing bone and cartilage of the embryonic human, cat, pig and rat. The differential staining is accomplished by using a modification of Dawson's method of staining bone with alizarin red S following a toluidine blue solution specific for cartilage. Specimens are fixed in 10% formalin, stained one week in a solution of .25 g. of toluidine blue in 100 cc. of 70% alcohol, macerated 5 to 7 days in a 2% KOH solution, counterstained for 24 hours in a 0.001% solution of alizarin red S in 2% aqueous KOH, dehydrated in cellosolve and cleared in methyl salicylate. In the adult and embryonic forms thus treated the soft tissues are cleared while the osseous tissue is stained red, the cartilage blue.  相似文献   

12.
T Yamada 《Teratology》1991,43(6):615-619
A convenient method for staining cartilage with several basic stains after alizarin red S staining of bone was investigated in rat fetuses. It was found that bromophenol blue was useful and effective for staining of the margin and center areas of cartilage, even in specimens stored in glycerin for over 10 years. The specimens were washed in running tap water for 1 hr, and subsequently were immersed in water or in 70% ethanol at pH 4 for 1 hr or longer. The specimens were then stained with 0.005% bromophenol blue in 40% ethanol adjusted to pH 4 for 2 hr, or with 0.001% bromophenol blue in 40% ethanol adjusted to pH 4 for 24 hr. Furthermore, the bromophenol blue stain color actually faded when the specimens were immersed in water or in 70% ethanol at pH 8. Descending order of the stain-effective action on fetal rat cartilage for the basic stains tested was bromophenol blue, aniline blue, Evans blue, methyl violet, trypan blue, and water blue.  相似文献   

13.
BACKGROUND: The most comprehensive evaluation of vertebrate skeletal development involves the use of Alizarin Red S dye to stain ossified bone and various other dyes to stain cartilage. The dye used most widely to stain fetal cartilage in rodents and rabbits is Alcian Blue 8GX. However, the global supply of this specific dye has been exhausted. Several forms of the dye marketed as Alcian Blue 8GX are now available, although they are not synthesized via the original 8GX manufacturing process. METHODS: One new Alcian Blue 8GX form and two Alcian Blue dye variants were evaluated in rats and rabbits using standard staining procedures. The staining quality of these dyes were evaluated relative to the original form of Alcian Blue 8GX based on cartilage uptake of the dye, clarity of the cartilaginous components, staining intensity of the dye, and overall readability of the specimens under stereomicroscopic evaluation. RESULTS: Staining with the newer form of Alcian Blue 8GX resulted in poor staining quality. The Alcian Blue-Pyridine variant performed well, although staining intensity was less than optimal. The Alcian Blue-Tetrakis variant provided staining characteristics that were most similar to the original form of Alcian Blue 8GX. CONCLUSIONS: Alcian Blue-Tetrakis was markedly better in its ability to stain fetal cartilage than the newer form of Alcian Blue 8GX.  相似文献   

14.
Osteogenesis in the embryonic long bone rudiment occurs initially within an outer periosteal membrane and subsequently inside the cartilaginous core as a consequence of the endochondral ossification process. In order to investigate the development of these two different mechanisms of bone formation, embryonic chick tibial cell isolates were prepared from sites of first periosteal bone formation and from the immediately underlying hypertrophic cartilaginous core region. Mid-diaphyseal periosteal collars and the corresponding cartilage core were microdissected free from Hamburger-Hamilton stage 35 (Day 9) chick tibias and separately digested with a trypsin-collagenase enzyme mixture. The released cell populations were cultivated in vitro and characterized by morphological analysis, histochemical localization of alkaline phosphatase, alizarin red S staining for mineral deposition, growth rate [( 3H]thymidine uptake), and proteoglycan content. Results of these studies showed that periosteal collar cell cultures form nodule-like structures that stain positive with alkaline phosphatase and alizarin red S. Light and electron microscopic observation revealed cell and matrix morphologies similar to that of intact periosteum. The nodules were composed of plump cell types embedded within a mineralized matrix surrounded by a fibroblastic cell layer. Core cartilage cell cultures displayed typical characteristics of the hypertrophic state in their visual appearance and proteoglycan composition. The formation of osseous-like structures in periosteal collar cell cultures but not in core chondrocyte cell cultures demonstrates the relatively autonomous nature of intramembranous ossification while emphasizing the dependence of the endochondral ossification process upon an intact vascularized environment present in the developing tibia.  相似文献   

15.
Differential Staining of Aborted and Nonaborted Pollen   总被引:11,自引:0,他引:11  
A single staining solution was made by compounding it in the following order (dyes were from British Drug Houses): ethanol, 10 ml; 1% malachite green in 95% ethanol, 1 ml; distilled water, 50 ml; glycerol 25 ml; phenol, 5 gm; chloral hydrate, 5 gm; acid fuchsin 1% in water, 5 ml; orange G, 1% in water 0.5 ml; and glacial acetic acid, 1-4 ml. For best results in differentiation to give green pollen walls and red protoplasm, the staining solution should be acidified with glacial acetic acid. The amount of acid to be added depends upon thickness of the pollen walls: for very thin-walled pollen, 1 ml; for moderately thin walls, 2 ml; and for thick-walled or spiny-walled pollen, 3 ml of acid. For pollen inside non-dehiscent anthers, 4 ml of acid should be used. Staining is hastened by flaming the slide (for loose thin-walled pollen) or by immersing thick-walled pollen or anthers for 24-48 hr at 50 C. In the typical stain, aborted pollen grains are green; nonaborted, red. The method is useful for pollen inside nondehiscent anthers if these are small and not too deeply coloured naturally. The stain is very durable, especially if the coverslips are sealed with param wax. The staining solution will keep well for about a month. It is useful both for angiosperms and gymnosperm microgametes.  相似文献   

16.
Abstract

Whole-mount staining with Alcian blue for cartilage and alizarin red for bone has been widely used for visualizing the skeletal patterns of embryos and small adult vertebrates. The possibility of decalcification by the acidic Alcian blue solution is known, but standard staining protocols do not always avoid this issue. We investigated the effects of acidity on the stainability of developing bones in stage 36 chick embryos and developed an optimal procedure for obtaining reliable results with minimal decalcification. The diaphyses of long bone rudiments and the maxillofacial membranous bones progressively lost their stainability with alizarin red when the chick embryos were soaked for long periods in the preceding acidic Alcian blue staining solution for cartilage. Unless the acidity was neutralized with an alkaline solution, the remaining acidity in the specimens rendered the pH sufficiently low to prevent the subsequent alizarin red staining of the bones. These findings indicate that the mineralizing bones at the early stages of development are labile to acidity and become decalcified more substantially during the staining process than previously appreciated. The following points are important for visualizing such labile mineralizing bones in chick embryos: 1) fixing with formaldehyde followed by soaking in 70% ethanol, 2) minimizing the time that the specimens are exposed to the acidic Alcian blue solution, and 3) neutralizing and dehydrating the specimens by an alkaline-alcohol solution immediately after the cartilage staining. When the exact onset and/or an early phase of ossification are of interest, the current double-staining procedure should be accompanied by a control single-staining procedure directed only toward bone.  相似文献   

17.
Permanent preparations of air dried synovial fluids were prepared by staining calcium compounds with alizarin red S stain; each slide was coverslipped with Permount. Variables studied were: (a) concentration of the solution of alizarin red S, (b) pH of staining solution, (c) time of incubation in staining solution and aqueous and ethanolic content of staining solution. The staining effect of each solution was tested on calcium pyrophosphate dihydrate, calcium oxalate, apatite and monosodium urate (MSU). Of all the solutions, best results were obtained with 0.25% alizarin red S in 50% ethanol at pH 7.0 for 30 min. With this solution, the calcium-containing compounds were well stained. MSU did not stain and still preserved negative birefringence on polarizaton. Fixation of smears with ethanol served a double purpose: It fixed the slides without dissolving or removing MSU or the calcium compounds, yet it did dissolve five corticosteroids commonly used for intra-articular injection which may interfere with interpretation of compensated polarized light microscopy of synovial fluids.  相似文献   

18.
For nearly a century, Alizarin red S (alizarin sodium sulfonate) has been used by morphologists to stain calcified bone matrix. More recently, its traditional use has frequently been replaced by more modern techniques; however, its auto fluorescent property continues to contribute to research well beyond the context of bone development and regeneration. The purpose of this study is to describe detailed methods that can be used to capture the autofluorescence of Alizarin red‐stained mineralized tissues in juvenile zebrafish. These methods allow for in situ analyses of minute skeletal elements, such as pharyngeal teeth, and preclude the need for dissection.  相似文献   

19.
Specific staining of glycogen in rat liver fixed in chilled 80% alcohol, chilled formol alcohol or 10% neutral formalin has been accomplished with acid alizarin blue SWR, alizarin brilliant blue BS, alizarin red S, gallein, haematein, and haematoxylin solutions. TO prepare a staining solution, 1 gm dye, 1 gm K2CO3 and 5 gm KCl were dissolved by heating in 60 ml of water. Concentrated NH4OH (0.880 sp.gr.), 15 ml, followed by 15 ml of dry methanol were added to 20 ml of the cooled solution. Paraffi sections were stained for 5 min, rinsed in dry methanol, cleared in xylene, and mounted in D.P.X. The high specificity obviated the need for counterstaining: nuclei and cytoplasm were unstained. Precipitation of stain onto the slide was rare. As all the dyes carried, like carminic acid, numerous groups capable of forming hydrogen bonds, it is suggested that the staining mechanism involved hydrogen bonding.  相似文献   

20.
An aqueous solution of alizarin red S containing chloral hydrate both clears intact chlorophyllous gemma cells of Vittaria graminifolia and stains for protoplasmic calcium. Verification that the stain was protoplasmic rather than in the cell wall was shown by a positive reaction in extruded protoplasm. Similar staining was found in extruded protoplasm of Onoclea sensibilis spores. Differentiating gemma cells show localized protoplasmic accumulations of Ca2+ at sites where asymmetric cell divisions initiate the formation of rhizoids, antheridia or vegetative cells. The staining properties of the dye depend on careful control of pH and the addition of appropriate amounts of KCl to the mixture. Treatment of Onoclea spores and Vittaria gemmae with 100 mM EGTA for 30 min nearly abolishes staining of their extruded protoplasts and also of intact cells of gemmae. The use of alizarin red S with and without chloral hydrate demonstrates different pools of protoplasmic Ca2+. When Onoclea spores are ruptured to extrude the protoplasm, both dye mixtures stain a peripheral, granular protoplasmic component. However, the chloral hydrate-containing dye also reveals Ca2+ associated with small particulate protoplasmic components. Extruded protoplasm of gemma cells stains intensely with alizarin-chloral hydrate, but does not stain with alizarin lacking chloral hydrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号