首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Expression of the epithelial cell-specific heterotetrameric adaptor complex AP-1B is required for the polarized distribution of many membrane proteins to the basolateral surface of LLC-PK1 kidney cells. AP-1B is distinguished from the ubiquitously expressed AP-1A by exchange of its single 50-kD mu subunit, mu1A, being replaced by the closely related mu1B. Here we show that this substitution is sufficient to couple basolateral plasma membrane proteins, such as a low-density lipoprotein receptor (LDLR), to the AP-1B complex and to clathrin. The interaction between LDLR and AP-1B is likely to occur in the trans-Golgi network (TGN), as was suggested by the localization of functional, epitope-tagged mu1 by immunofluorescence and immunoelectron microscopy. Tagged AP-1A and AP-1B complexes were found in the perinuclear region close to the Golgi complex and recycling endosomes, often in clathrin-coated buds and vesicles. Yet, AP-1A and AP-1B localized to different subdomains of the TGN, with only AP-1A colocalizing with furin, a membrane protein that uses AP-1 to recycle between the TGN and endosomes. We conclude that AP-1B functions by interacting with its cargo molecules and clathrin in the TGN, where it acts to sort basolateral proteins from proteins destined for the apical surface and from those selected by AP-1A for transport to endosomes and lysosomes.  相似文献   

2.
The predominant intracellular localization of the eukaryotic subtilisin-like endoprotease furin is the trans-Golgi network (TGN), but a small fraction is also found on the cell surface. Furin on the cell surface is internalized and delivered to the TGN. The identification of three endocytosis motifs, a tyrosine (YKGL(765)) motif, a leucine-isoleucine (LI(760)) motif, and a phenylalanine (Phe(790)) signal, in the furin cytoplasmic domain suggested that endocytosis of furin occurs via an AP-2/clathrin-dependent pathway. Since little is known about proteins containing multiple sorting components in their cytoplasmic domain, the combination of diverse internalization signals in the furin tail raised the question of their individual role. Here we present data showing that the furin tail interacts with the medium (micro2) subunit of the AP-2 plasma membrane-specific adaptor complex in vitro and that this interaction primarily depends on recognition of the tyrosine-based sorting signal and to less extent on the leucine-isoleucine motif. We further provide evidence that the three endocytosis signals are of different functional importance for furin internalization and retrieval to the TGN in vivo, with the tyrosine-based motif being the major determinant, followed by the phenylalanine signal, whereas the leucine-isoleucine motif is only a minor component. Finally, we report that phosphorylation of the furin tail by casein kinase II is not only important for efficient interaction with micro2 and internalization from the plasma membrane but also determines fast retrieval of the protein from the plasma membrane to the TGN.  相似文献   

3.
Furin, a subtilisin-like eukaryotic endoprotease, is responsible for proteolytic cleavage of cellular and viral proteins transported via the constitutive secretory pathway. Cleavage occurs at the C-terminus of basic amino acid sequences, such as R-X-K/R-R and R-X-X-R. Furin was found predominantly in the trans-Golgi network (TGN), but also in clathrin-coated vesicles dispatched from the TGN, on the plasma membrane as an integral membrane protein and in the medium as an anchorless enzyme. When furin was vectorially expressed in normal rat kidney (NRK) cells it accumulated in the TGN similarly to the endogenous glycoprotein TGN38, often used as a TGN marker protein. The signals determining TGN targeting of furin were investigated by mutational analysis of the cytoplasmic tail of furin and by using the hemagglutinin (HA) of fowl plague virus, a protein with cell surface destination, as a reporter molecule, in which membrane anchor and cytoplasmic tail were replaced by the respective domains of furin. The membrane-spanning domain of furin grafted to HA does not localize the chimeric molecule to the TGN, whereas the cytoplasmic domain does. Results obtained on furin mutants with substitutions and deletions of amino acids in the cytoplasmic tail indicate that wild-type furin is concentrated in the TGN by a mechanism involving two independent targeting signals, which consist of the acidic peptide CPSDSEEDEG783 and the tetrapeptide YKGL765. The acidic signal in the cytoplasmic domain of a HA-furin chimera is necessary and sufficient to localize the reporter molecule to the TGN, whereas YKGL is a determinant for targeting to the endosomes. The data support the concept that the acidic signal, which is the dominant one, retains furin in the TGN, whereas the YKGL motif acts as a retrieval signal for furin that has escaped to the cell surface.  相似文献   

4.
The heterotetrameric AP-1 complex is involved in the formation of clathrin-coated vesicles at the trans-Golgi network (TGN) and interacts with sorting signals in the cytoplasmic tails of cargo molecules. Targeted disruption of the mouse mu1A-adaptin gene causes embryonic lethality at day 13.5. In cells deficient in micro1A-adaptin the remaining AP-1 adaptins do not bind to the TGN. Polarized epithelial cells are the only cells of micro1A-adaptin-deficient embryos that show gamma-adaptin binding to membranes, indicating the formation of an epithelial specific AP-1B complex and demonstrating the absence of additional mu1A homologs. Mannose 6-phosphate receptors are cargo molecules that exit the TGN via AP-1-clathrin-coated vesicles. The steady-state distribution of the mannose 6-phosphate receptors MPR46 and MPR300 in mu1A-deficient cells is shifted to endosomes at the expense of the TGN. MPR46 fails to recycle back from the endosome to the TGN, indicating that AP-1 is required for retrograde endosome to TGN transport of the receptor.  相似文献   

5.
A S Dittié  L Thomas  G Thomas    S A Tooze 《The EMBO journal》1997,16(16):4859-4870
The composition of secretory granules in neuroendocrine and endocrine cells is determined by two sorting events; the first in the trans-Golgi complex (TGN), the second in the immature secretory granule (ISG). Sorting from the ISG, which may be mediated by the AP-1 type adaptor complex and clathrin-coated vesicles, occurs during ISG maturation. Here we show that furin, a ubiquitously expressed, TGN/endosomal membrane endoprotease, is present in the regulated pathway of neuroendocrine cells where it is found in ISGs. By contrast, TGN38, a membrane protein that is also routed through the TGN/endosomal system does not enter ISGs. Furin, however, is excluded from mature secretory granules, suggesting that the endoprotease is retrieved from the clathrin-coated ISGs. Consistent with this, we show that the furin cytoplasmic domain interacts with AP-1, a component of the TGN/ISG-localized clathrin sorting machinery. Interaction between AP-1 and furin is dependent on phosphorylation of the enzyme's cytoplasmic domain by casein kinase II. Finally, in support of a requirement for the phosphorylation-dependent association of furin with AP-1, expression of furin mutants that mimic either the phosphorylated or unphosphorylated forms of the endoprotease in AtT-20 cells demonstrates that the integrity of the CKII sites is necessary for removal of furin from the regulated pathway.  相似文献   

6.
Lysosomal membrane glycoproteins carry targeting information in cytoplasmic regions. Two distinct targeting motifs in these regions, GY (glycine-tyrosine) and LI (leucine-isoleucine), have been identified and characterized. Accumulating evidence suggests that the adaptor complexes (AP-1, AP-2, and AP-3) recognize this information in cytoplasmic tails of transmembrane proteins. Here we report two different in vitro analyses (affinity beads and surface plasmon resonance) which revealed specific interaction between the cytoplasmic tail of LGP85 and AP-1 but not so with AP-2. We also noted requirement of the LI motif of the LGP85 tail in binding to the AP-1 complex. Our data and others which indicated the binding of AP-3 to the LIMP II (synonym of LGP85) tail suggest that the cytoplasmic tail of LGP85 interacts with AP-1 at the trans-Golgi network (TGN) and AP-3 at late endosomes, respectively. We propose that this sequential interaction between the lysosomal targeting signal and distinct APs along its transport pathway is responsible for the critical sorting of lysosomal membrane proteins and/or the potential proofreading system of mistargeted molecules.  相似文献   

7.
S Hning  J Griffith  H J Geuze    W Hunziker 《The EMBO journal》1996,15(19):5230-5239
Diversion of membrane proteins from the trans-Golgi network (TGN) or the plasma membrane into the endosomal system occurs via clathrin-coated vesicles (CCVs). These sorting events may require the interaction of cytosolic domain signals with clathrin adaptor proteins (APs) at the TGN (AP-1) or the plasma membrane (AP-2). While tyrosine- and di-leucine-based signals in several proteins mediate endocytosis via cell surface CCVs, segregation into Golgi-derived CCVs has so far only been documented for the mannose 6-phosphate receptors, where it is thought to require a casein kinase II phosphorylation site adjacent to a di-leucine motif. Although recently tyrosine-based signals have also been shown to interact with the mu chain of AP-1 in vitro, it is not clear if these signals also bind intact AP-1 adaptors, nor if they can mediate sorting of proteins into AP-1 CCVs. Here we show that the cytosolic domain of the lysosomal membrane glycoprotein lamp-1 binds AP-1 and AP-2. Furthermore, lamp-1 is present in AP-1-positive vesicles and tubules in the trans-region on the Golgi complex. AP-1 binding as well as localization to AP-1 CCVs require the presence of the functional tyrosine-based lysosomal targeting signal of lamp-1. These results indicate that lamp-1 can exit the TGN in CCVs and that tyrosine signals can mediate these sorting events.  相似文献   

8.
The adaptor protein complex-1 (AP-1) sorts and packages membrane proteins into clathrin-coated vesicles (CCVs) at the TGN and endosomes. Here we show that this process is highly regulated by phosphorylation of AP-1 subunits. Cell fractionation studies revealed that membrane-associated AP-1 differs from cytosolic AP-1 in the phosphorylation status of its beta1 and mu1 subunits. AP-1 recruitment onto the membrane is associated with protein phosphatase 2A (PP2A)-mediated dephosphorylation of its beta1 subunit, which enables clathrin assembly. This Golgi-associated isoform of PP2A exhibits specificity for phosphorylated beta1 compared with phosphorylated mu1. Once on the membrane, the mu1 subunit undergoes phosphorylation, which results in a conformation change, as revealed by increased sensitivity to trypsin. This conformational change is associated with increased binding to sorting signals on the cytoplasmic tails of cargo molecules. Dephosphorylation of mu1 (and mu2) by another PP2A-like phosphatase reversed the effect and resulted in adaptor release from CCVs. Immunodepletion and okadaic acid inhibition studies demonstrate that PP2A is the cytosolic cofactor for Hsc-70-mediated adaptor uncoating. A model is proposed where cyclical phosphorylation/dephosphorylation of the subunits of AP-1 regulate its function from membrane recruitment until its release into cytosol.  相似文献   

9.
Adaptor protein complexes (AP) are major components of the cytoplasmic coat found on clathrin-coated vesicles. Here, we report the molecular and functional characterization of Dictyostelium clathrin-associated AP-1 complex, which in mammalian cells, participates mainly in budding of clathrin-coated vesicles from the trans-Golgi network (TGN). The gamma-adaptin AP-1 subunit was cloned and shown to belong to a Golgi-localized 300-kDa protein complex. Time-lapse analysis of cells expressing gamma-adaptin tagged with the green-fluorescent protein demonstrates the dynamics of AP-1-coated structures leaving the Golgi apparatus and rarely moving toward the TGN. Targeted disruption of the AP-1 medium chain results in viable cells displaying a severe growth defect and a delayed developmental cycle compared with parental cells. Lysosomal enzymes are constitutively secreted as precursors, suggesting that protein transport between the TGN and lysosomes is defective. Although endocytic protein markers are correctly localized to endosomal compartments, morphological and ultrastructural studies reveal the absence of large endosomal vacuoles and an increased number of small vacuoles. In addition, the function of the contractile vacuole complex (CV), an osmoregulatory organelle is impaired and some CV components are not correctly targeted.  相似文献   

10.
BIG2 and BIG1 are closely related guanine-nucleotide exchange factors (GEFs) for ADP-ribosylation factors (ARFs) and are involved in the regulation of membrane traffic through activating ARFs and recruiting coat protein complexes, such as the COPI complex and the AP-1 clathrin adaptor complex. Although both ARF-GEFs are associated mainly with the trans-Golgi network (TGN) and BIG2 is also associated with recycling endosomes, it is unclear whether BIG2 and BIG1 share some roles in membrane traffic. We here show that knockdown of both BIG2 and BIG1 by RNAi causes mislocalization of a subset of proteins associated with the TGN and recycling endosomes and blocks retrograde transport of furin from late endosomes to the TGN. Similar mislocalization and protein transport block, including furin, were observed in cells depleted of AP-1. Taken together with previous reports, these observations indicate that BIG2 and BIG1 play redundant roles in trafficking between the TGN and endosomes that involves the AP-1 complex.  相似文献   

11.
A Alconada  U Bauer    B Hoflack 《The EMBO journal》1996,15(22):6096-6110
We have studied the intracellular trafficking of the envelope glycoprotein I (gpI) of the varicella-zoster virus, a human herpes virus whose assembly is believed to occur in the trans-Golgi network (TGN) and/or in endocytic compartments. When expressed in HeLa cells in the absence of additional virally encoded factors, this type-I membrane protein localizes to the TGN and cycles between this compartment and the cell surface. The expression of gpI promotes the recruitment of the AP-1 Golgi-specific assembly proteins onto TGN membranes, strongly suggesting that gpI, like the mannose 6-phosphate receptors, can leave the TGN in clathrin-coated vesicles for subsequent transport to endosomes. Its return from the cell surface to the TGN also occurs through endosomes. The transfer of the gpI cytoplasmic domain onto a reporter molecule shows that this domain is sufficient to confer TGN localization. Mutational analysis of this domain indicates that proper subcellular localization and cycling of gpI depend on two different determinants, a tyrosine-containing tetrapeptide related to endocytosis sorting signals and a cluster of acidic amino acids containing casein kinase II phosphorylatable residues. Thus, the VZV gpI and the mannose 6-phosphate receptors, albeit localized in different intracellular compartments at steady-state, follow similar trafficking pathways and share similar sorting mechanisms.  相似文献   

12.
Eps15 (EGFR pathway substrate clone 15) is well known for its role in clathrin-coated vesicle formation at the plasma membrane through interactions with other clathrin adaptor proteins such as AP-2. Interestingly, we observed that in addition to its plasma membrane localization, Eps15 is also present at the trans-Golgi network (TGN). Therefore, we predicted that Eps15 might associate with clathrin adaptor proteins at the TGN and thereby mediate the formation of Golgi-derived vesicles. Indeed, we have found that Eps15 and the TGN clathrin adaptor AP-1 coimmunoprecipitate from rat liver Golgi fractions. Furthermore, we have identified a 14-amino acid motif near the AP-2-binding domain of Eps15 that is required for binding to AP-1, but not AP-2. Disruption of the Eps15-AP-1 interaction via siRNA knockdown of AP-1 or expression of mutant Eps15 protein, which lacks a 14-amino acid motif representing the AP-1 binding site of Eps15, significantly reduced the exit of secretory proteins from the TGN. Together, these findings indicate that Eps15 plays an important role in clathrin-coated vesicle formation not only at the plasma membrane but also at the TGN during the secretory process.  相似文献   

13.
TIP47 (tail-interacting protein of 47 kDa) binds to the cytoplasmic domains of the cation-independent and cation-dependent mannose 6-phosphate receptors and is required for their transport from late endosomes to the trans Golgi network in vitro and in vivo. We report here a quantitative analysis of the interaction of recombinant TIP47 with mannose 6-phosphate receptor cytoplasmic domains. Recombinant TIP47 binds more tightly to the cation-independent mannose 6-phosphate receptor (K(D) = 1 microm) than to the cation-dependent mannose 6-phosphate receptor (K(D) = 3 microm). In addition, TIP47 fails to interact with the cytoplasmic domains of the hormone-processing enzymes, furin, phosphorylated furin, and metallocarboxypeptidase D, as well as the cytoplasmic domain of TGN38, proteins that are also transported from endosomes to the trans Golgi network. Although these proteins failed to bind TIP47, furin and TGN38 were readily recognized by the clathrin adaptor, AP-2. These data suggest that TIP47 recognizes a very select set of cargo molecules. Moreover, our data suggest unexpectedly that furin, TGN38, and carboxypeptidase D may use a distinct vesicular carrier and perhaps a distinct route for transport between endosomes and the trans Golgi network.  相似文献   

14.
The E6 gene of the bovine papillomavirus type 1 (BPV-1) is expressed in fibropapillomas caused by BPV-1 and in tissue culture cells transformed by BPV-1. It encodes one of the two major oncoproteins of BPV-1. In this study, we demonstrate an interaction between the BPV-1 E6 protein and AP-1, the TGN (trans-Golgi network)-specific clathrin adaptor complex. AP-1 is a four-subunit protein complex required for clathrin-mediated cellular transport from the TGN. The AP-1/E6 interaction was observed in vitro and in cells. The E6 binding site on AP-1 was mapped to the N-terminal trunk domain of the γ subunit. BPV-1 E6 preferentially associated with membrane-bound AP-1 in cells but not with free cytosolic AP-1. BPV-1 E6 was further shown to be recruited to isolated Golgi membranes and to copurify with clathrin-coated vesicles. The recruitment of BPV-1 E6 to Golgi membranes was AP-1 independent, but the E6 interaction with AP-1 was required for its association with clathrin-coated vesicles. Furthermore, AP-1 proteins could compete with BPV-1 E6 for binding to Golgi membranes, suggesting that the recruitment of BPV-1 E6 and AP-1 to Golgi membranes involves a common factor. Taken together, our results suggest that cytosolic BPV-1 E6 is first recruited to the TGN, where it is then recognized by membrane-bound AP-1 and subsequently recruited into TGN-derived clathrin-coated vesicles. We propose that BPV-1 E6, through its interaction with AP-1, can affect cellular processes involving clathrin-mediated trafficking pathway.  相似文献   

15.
The transport of the two mannose 6-phosphate receptors (MPRs) from the secretory pathway to the endocytic pathway is mediated by carrier vesicles coated with the AP-1 Golgi-specific assembly protein and clathrin. Using an in vitro assay that reconstitutes the ARF-1–dependent translocation of cytosolic AP-1 onto membranes of the TGN, we have previously reported that the MPRs are key components for the efficient recruitment of AP-1 (Le Borgne, R., G. Griffiths, and B. Hoflack. 1996. J. Biol. Chem. 271:2162–2170). Using a polyclonal antibody against the mouse γ-adaptin, we have now examined the steady state distribution of AP-1 after subcellular fractionation of mouse fibroblasts lacking both MPRs or reexpressing physiological levels of either MPR. We report that the amount of AP-1 bound to membranes and associated with clathrin-coated vesicles depends on the expression level of the MPRs and on the integrity of their cytoplasmic domains. Thus, these results indicate that the concentration of the MPRs, i.e., the major transmembrane proteins sorted toward the endosomes, determines the number of clathrin-coated vesicles formed in the TGN.  相似文献   

16.
Assembly, target-signaling and transport of tyrosinase gene family proteins at the initial stage of melanosome biogenesis are reviewed based on our own discoveries. Melanosome biogenesis involves four stages of maturation with distinct morphological and biochemical characteristics that reflect distinct processes of the biosynthesis of structural and enzymatic proteins, subsequent structural organization and melanin deposition occurring in these particular cellular compartments. The melanosomes share many common biological properties with the lysosomes. The stage I melanosomes appear to be linked to the late endosomes. Most of melanosomal proteins are glycoproteins that should be folded or assembled correctly in the ER through interaction with calnexin, a chaperone associated with melanogenesis. These melanosomal glycoproteins are then accumulated in the trans Golgi network (TGN) and transported to the melanosomal compartment. During the formation of transport vesicles, coat proteins assemble on the cytoplasmic face of TGN to select their cargos by interacting directly or indirectly with melanosomal glycoproteins to be transported. Adapter protein-3 (AP-3) is important for intracellular transport of tyrosinase gene family proteins from TGN to melanosomes. Tyrosinase gene family proteins possess a di-leucine motif in their cytoplasmic tail, to which AP-3 appears to bind. Thus, the initial cascade of melanosome biogenesis is regulated by several factors including: 1) glycosylation of tyrosinase gene family proteins and their correct folding and assembly within ER and Golgi, and 2) supply of specific signals necessary for intracellular transport of these glycoproteins by vesicles from Golgi to melanosomes.  相似文献   

17.
The heterotetrameric AP-1 adaptor complex is involved in the assembly of clathrin-coated vesicles originating from the trans-Golgi network (TGN). The beta 1 subunit of AP-1 is known to contain a consensus clathrin binding sequence, LLNLD (the so-called clathrin box motif), in its hinge segment through which the beta chain interacts with the N-terminal domains of clathrin trimers. Here, we report that the hinge region of the gamma subunit of human and mouse AP-1 contains two copies of a new variant, LLDLL, of the clathrin box motif that also bind to the terminal domain of the clathrin heavy chain. High-affinity binding of the gamma hinge to clathrin trimers requires both LLDLL sequences to be present and the spacing between them to be maintained. We also identify an independent clathrin-binding site within the appendage domain of the gamma subunit that interacts with a region of clathrin other than the N-terminal domain. Clathrin polymerization is promoted by glutathione S-transferase (GST)-gamma hinge, but not by GST-gamma appendage. However, the hinge and appendage domains of gamma function in a cooperative manner to recruit and polymerize clathrin, suggesting that clathrin lattice assembly at the TGN involves multivalent binding of clathrin by the gamma and beta1 subunits of AP-1.  相似文献   

18.
Lysosomal biogenesis depends on proper transport of lysosomal enzymes by the cation-dependent mannose 6-phosphate receptor (CD-MPR) from the trans-Golgi network (TGN) to endosomes. Trafficking of the CDMPR is mediated by sorting signals in its cytoplasmic tail. GGA1 (Golgi-localizing, gamma-ear-containing, ARF-binding protein-1) binds to CD-MPR in the TGN and targets the receptor to clathrin-coated pits for transport from the TGN to endosomes. The motif of the CD-MPR that interacts with GGA1 was shown to be 61DXXLL65. Reports on increased affinity of cargo, when phosphorylated by casein kinase 2 (CK2), to GGAs focused our interest on the effect of the CD-MPR CK2 site on binding to GGA1. Here we demonstrate that Glu58 and Glu59 of the CK2 site are essential for high affinity GGA1 binding in vitro, whereas the phosphorylation of Ser57 of the CD-MPR has no influence on receptor binding to GGA1. Furthermore, the in vivo interaction between GGA1 and CD-MPR was abolished only when all residues involved in GGA1 binding were mutated, namely, Glu58, Glu59, Asp61, Leu64, and Leu65. In contrast, the binding of adaptor protein-1 (AP-1) to CD-MPR required all the glutamates surrounding the phosphorylation site, namely, Glu55, Glu56, Glu58, and Glu59, but like GGA1 binding, was independent of the phosphorylation of Ser57. The binding affinity of GGA1 to the CD-MPR was found to be 2.4-fold higher than that of AP-1. This could regulate the binding of the two proteins to the partly overlapping sorting signals, allowing AP-1 binding to the CD-MPR only when GGA1 is released upon autoinhibition by phosphorylation.  相似文献   

19.
SorLA/LR11 (250 kDa) is the largest and most composite member of the Vps10p-domain receptors, a family of type 1 proteins preferentially expressed in neuronal tissue. SorLA binds several ligands, including neurotensin, platelet-derived growth factor-bb, and lipoprotein lipase, and via complex-formation with the amyloid precursor protein it downregulates generation of Alzheimer's disease-associated Abeta-peptide. The receptor is mainly located in vesicles, suggesting a function in protein sorting and transport. Here we examined SorLA's trafficking using full-length and chimeric receptors and find that its cytoplasmic tail mediates efficient Golgi body-endosome transport, as well as AP-2 complex-dependent endocytosis. Functional sorting sites were mapped to an acidic cluster-dileucine-like motif and to a GGA binding site in the C terminus. Experiments in permanently or transiently AP-1 mu1-chain-deficient cells established that the AP-1 adaptor complex is essential to SorLA's transport between Golgi membranes and endosomes. Our results further implicate the GGA proteins in SorLA trafficking and provide evidence that SNX1 and Vps35, as parts of the retromer complex or possibly in a separate context, are engaged in retraction of the receptor from endosomes.  相似文献   

20.
Furin is a subtilisin-related endoprotease which processes a wide range of bioactive proteins. Furin is concentrated in the trans-Golgi network (TGN), where proteolytic activation of many precursor proteins takes place. A significant fraction of furin, however, cycles among the TGN, the plasma membrane, and endosomes, indicating that the accumulation in the TGN reflects a dynamic localization process. The cytosolic domain of furin is necessary and sufficient for TGN localization, and two signals are responsible for retrieval of furin to the TGN. A tyrosine-based (YKGL) motif mediates internalization of furin from the cell surface into endosomes. An acidic cluster that is part of two casein kinase II phosphorylation sites (SDSEEDE) is then responsible for retrieval of furin from endosomes to the TGN. In addition, the acidic EEDE sequence also mediates endocytic activity. Here, we analyzed the sorting of furin in polarized epithelial cells. We show that furin is delivered to the basolateral surface of MDCK cells, from where a significant fraction of the protein can return to the TGN. A phenylalanine-isoleucine motif together with the acidic EEDE cluster is required for basolateral sorting and constitutes a novel signal regulating intracellular traffic of furin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号