首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
2.
Jasmonates (JAs) and salicylic acid (SA) are plant hormones that play pivotal roles in the regulation of induced defenses against microbial pathogens and insect herbivores. Their signaling pathways cross-communicate providing the plant with a regulatory potential to finely tune its defense response to the attacker(s) encountered. In Arabidopsis thaliana, SA strongly antagonizes the jasmonic acid (JA) signaling pathway, resulting in the downregulation of a large set of JA-responsive genes, including the marker genes PDF1.2 and VSP2. Induction of JA-responsive marker gene expression by different JA derivatives was equally sensitive to SA-mediated suppression. Activation of genes encoding key enzymes in the JA biosynthesis pathway, such as LOX2, AOS, AOC2, and OPR3 was also repressed by SA, suggesting that the JA biosynthesis pathway may be a target for SA-mediated antagonism. To test this, we made use of the mutant aos/dde2, which is completely blocked in its ability to produce JAs because of a mutation in the ALLENE OXIDE SYNTHASE gene. Mutant aos/dde2 plants did not express the JA-responsive marker genes PDF1.2 or VSP2 in response to infection with the necrotrophic fungus Alternaria brassicicola or the herbivorous insect Pieris rapae. Bypassing JA biosynthesis by exogenous application of methyl jasmonate (MeJA) rescued this JA-responsive phenotype in aos/dde2. Application of SA suppressed MeJA-induced PDF1.2 expression to the same level in the aos/dde2 mutant as in wild-type Col-0 plants, indicating that SA-mediated suppression of JA-responsive gene expression is targeted at a position downstream of the JA biosynthesis pathway.  相似文献   

3.
4.
Glutathione is a determinant of cellular redox state with roles in defence and detoxification. Emerging concepts suggest that this compound also has functions in cellular signalling. Here, we report evidence that glutathione plays potentially important roles in setting signalling strength through the jasmonic acid (JA) pathway. Firstly, we show that basal expression of JA‐related genes is correlated with leaf glutathione content when the latter is manipulated either genetically or pharmacologically. Secondly, analyses of an oxidative stress signalling mutant, cat2, reveal that up‐regulation of the JA pathway triggered by intracellular oxidation requires accompanying glutathione accumulation. Genetically blocking this accumulation in a cat2 cad2 line largely annuls H2O2‐induced expression of JA‐linked genes, and this effect can be rescued by exogenously supplying glutathione. While most attention on glutathione functions in biotic stress responses has been focused on the thiol‐regulated protein NPR1, a comparison of JA‐linked gene expression in cat2 cad2 and cat2 npr1 double mutants provides evidence that glutathione acts through other components to regulate the response of this pathway to oxidative stress. Our study provides new information implicating glutathione as a factor determining basal JA gene expression and suggests novel glutathione‐dependent control points that regulate JA signalling in response to intracellular oxidation.  相似文献   

5.
6.
The plant growth‐promoting fungi (PGPF) have long been known to improve plant growth and suppress plant diseases. The PGPF Penicillium viridicatum GP15‐1 elicited plant growth and induced systemic resistance (ISR) in Arabidopsis thaliana against Pseudomonas syringae pv. tomato DC3000 (Pst), leading to a restriction of pathogen growth and disease development. Examination of local and systemic genes indicated that GP15‐1 did not modulate the expression of any of the tested defence‐related marker genes involved in salicylic acid (SA), jasmonic acid (JA) and ethylene signalling pathways. Subsequent challenge of GP15‐1‐colonized plants with Pst bacterium primed Arabidopsis plants for enhanced activation of the JA‐inducible Atvsp (vegetative storage protein) gene at a later stage of infection. To assess the contribution of different signalling pathways in GP15‐1‐elicited plant growth and ISR, Arabidopsis genotypes implicated in SA signalling expressing the nahG transgene (NahG) or carrying disruption in NPR1 (npr1), JA signalling (jar1) and ethylene signalling (ein2) were tested. The GP15‐1‐induced plant growth and ISR were fully compromised in an ein2 mutation. Root colonization assay revealed that the inability of the ein2 mutant to express GP15‐1‐induced plant growth and ISR was not associated with reduced root colonization by GP15‐1. In conclusion, our results demonstrate the ethylene signalling pathway is involved in plant growth promotion and ISR elicitation by the PGPF P. viridicatum GP15‐1 in Arabidopsis. These results provide evidence that ethylene signalling has a substantial role in plant growth and disease resistance.  相似文献   

7.
Jasmonic acid (JA) regulates plant defenses against necrotrophic pathogens and insect herbivores. Salicylic acid (SA) and abscisic acid (ABA) can antagonize JA‐regulated defenses, thereby modulating pathogen or insect resistance. We performed a genome‐wide association (GWA) study on natural genetic variation in Arabidopsis thaliana for the effect of SA and ABA on the JA pathway. We treated 349 Arabidopsis accessions with methyl JA (MeJA), or a combination of MeJA and either SA or ABA, after which expression of the JA‐responsive marker gene PLANT DEFENSIN1.2 (PDF1.2) was quantified as a readout for GWA analysis. Both hormones antagonized MeJA‐induced PDF1.2 in the majority of the accessions but with a large variation in magnitude. GWA mapping of the SA‐ and ABA‐affected PDF1.2 expression data revealed loci associated with crosstalk. GLYI4 (encoding a glyoxalase) and ARR11 (encoding an Arabidopsis response regulator involved in cytokinin signalling) were confirmed by T‐DNA insertion mutant analysis to affect SA–JA crosstalk and resistance against the necrotroph Botrytis cinerea. In addition, At1g16310 (encoding a cation efflux family protein) was confirmed to affect ABA–JA crosstalk and susceptibility to Mamestra brassicae herbivory. Collectively, this GWA study identified novel players in JA hormone crosstalk with potential roles in the regulation of pathogen or insect resistance.  相似文献   

8.
Nitric oxide (NO) has been associated with plant defense responses during microbial attack, and with induction and/or regulation of programmed cell death. Here, we addressed whether NO participates in wound responses in Arabidopsis thaliana (L.) Heynh.. Real-time imaging by confocal laser-scanning microscopy in conjunction with the NO-selective fluorescence indicator 4,5-diaminofluorescein diacetate (DAF-2 DA) uncovered a strong NO burst after wounding or after treatment with JA. The NO burst was triggered within minutes, reminiscent of the oxidative burst during hypersensitive responses. Furthermore, we were able to detect NO in plants (here induced by wounding) by means of electron paramagnetic resonance measurements using diethyldithiocarbamate as a spin trap. When plants were treated with NO, Northern analyses revealed that NO strongly induces key enzymes of jasmonic acid (JA) biosynthesis such as allene oxide synthase (AOS) and lipoxygenase (LOX2). On the other hand, wound-induced AOS gene expression was independent of NO. Furthermore, JA-responsive genes such as defensin (PDF1.2) were not induced, and NO induction of JA-biosynthesis enzymes did not result in elevated levels of JA. However, treatment with NO resulted in accumulation of salicylic acid (SA). In transgenic NahG plants (impaired in SA accumulation and/or signaling), NO did induce JA production and expression of JA-responsive genes. Altogether, the presented data demonstrate that wounding in Arabidopsis induces a fast accumulation of NO, and that NO may be involved in JA-associated defense responses and adjustments.Abbreviations AOS Allene oxide synthase - cPTIO Carboxy-2-phenyl-4,4,5,5-tetramethylimidazolinone-3-oxide-1-oxyl - DAF-2 DA 4,5-Diaminofluorescein diacetate - DETC Diethyldithiocarbamate - EPR Electron paramagnetic resonance - iNOS Inducible nitric oxide synthase - JA Jasmonic acid - JIP Jasmonic acid-induced protein - LOX2 Lipoxygenase 2 - NO Nitric oxide - OPR3 12-Oxophytodienoate reductase - PDF1.2 Plant defensin - ROS Reactive oxygen species - SA Salicylic acid - SNP Sodium nitroprusside  相似文献   

9.
10.
11.
12.
Defence against pathogens in Arabidopsis is orchestrated by at least three signalling molecules: salicylic acid (SA), jasmonic acid (JA) and ethylene (ET). The hrl1 (hypersensitive response-like lesions 1) mutant of Arabidopsis is characterized by spontaneous necrotic lesions, accumulation of reactive oxygen species, constitutive expression of SA- and ET/JA-responsive defence genes, and enhanced resistance to virulent bacterial and oomycete pathogens. Epistasis analyses of hrl1 with npr1, etr1, coi1 and SA-depleted nahG plants revealed novel interactions between SA and ET/JA signalling pathways in regulating defence gene expression and cell death. RNA gel-blot analysis of RNA isolated separately from the lesion+ and the lesion- leaves of double mutants of hrl1 revealed different signalling requirements for the expression of defence genes in these tissues. Expression of the ET/JA-responsive PDF1.2 gene was markedly reduced in hrl1 npr1 and in SA-depleted hrl1 nahG plants. In hrl1 nahG plants, expression of PDF1.2 was regulated by benzathiadiazole in a concentration-dependent manner: induced at low concentration and suppressed at high concentration. The hrl1 etr1 plants lacked systemic PR-1 expression, and exhibited compromised resistance to virulent Pseudomonas syringae and Peronospora parasitica. Inhibiting JA responses in hrl1 coi1 plants lead to exaggerated cell death and severe stunting of plants. Finally, the hrl1 mutation lead to elevated expression of AtrbohD, which encodes a major subunit of the NADPH oxidase complex. Our results indicate that defence gene expression and resistance against pathogens in hrl1 is regulated synergistically by SA and ET/JA defence pathways.  相似文献   

13.
14.
15.
Jasmonates (JAs) are important regulators of plant biotic and abiotic stress responses and development. AtJMT in Arabidopsis thaliana and BcNTR1 in Brassica campestris encode jasmonic acid carboxyl methyltransferases, which catalyze methyl jasmonate (MeJA) biosynthesis and are involved in JA signaling. Their expression is induced by MeJA application. To understand its regulatory mechanism, here we define a novel JA-responsive cis-element (JARE), G(C)TCCTGA, in the AtJMT and BcNTR1 promoters, by promoter deletion analysis and Yeast 1-Hybrid (Y1H) assays; the JARE is distinct from other JA-responsive cis-elements previously reported. We also used Y1H screening to identify a trans-acting factor, AtBBD1, which binds to the JARE and interacts with AtJAZ1 and AtJAZ4. Knockout and overexpression analyses showed that AtBBD1 and its close homologue AtBBD2 are functionally redundant and act as negative regulators of AtJMT expression. However, AtBBD1 positively regulated the JA-responsive expression of JR2. Chromatin immunoprecipitation from knockout and overexpression plants revealed that repression of AtJMT is associated with reduced histone acetylation in the promoter region containing the JARE. These results show that AtBBD1 interacts with JAZ proteins, binds to the JARE and represses AtJMT expression.  相似文献   

16.
Improving genetic resistance is a preferred method to manage Verticillium wilt of cotton and other hosts. Identifying host resistance is difficult because of the dearth of resistance genes against this pathogen. Previously, a novel candidate gene involved in Verticillium wilt resistance was identified by a genome-wide association study using a panel of Gossypium hirsutum accessions. In this study, we cloned the candidate resistance gene from cotton that encodes a protein sharing homology with the TIR-NBS-LRR receptor-like defence protein DSC1 in Arabidopsis thaliana (hereafter named GhDSC1). GhDSC1 expressed at higher levels in response to Verticillium wilt and jasmonic acid (JA) treatment in resistant cotton cultivars as compared to susceptible cultivars and its product was localized to nucleus. The transfer of GhDSC1 to Arabidopsis conferred Verticillium resistance in an A. thaliana dsc1 mutant. This resistance response was associated with reactive oxygen species (ROS) accumulation and increased expression of JA-signalling-related genes. Furthermore, the expression of GhDSC1 in response to Verticillium wilt and JA signalling in A. thaliana displayed expression patterns similar to GhCAMTA3 in cotton under identical conditions, suggesting a coordinated DSC1 and CAMTA3 response in A. thaliana to Verticillium wilt. Analyses of GhDSC1 sequence polymorphism revealed a single nucleotide polymorphism (SNP) difference between resistant and susceptible cotton accessions, within the P-loop motif encoded by GhDSC1. This SNP difference causes ineffective activation of defence response in susceptible cultivars. These results demonstrated that GhDSC1 confers Verticillium resistance in the model plant system of A. thaliana, and therefore represents a suitable candidate for the genetic engineering of Verticillium wilt resistance in cotton.  相似文献   

17.
18.
19.
The changes in cytosolic Ca2+ levels play important roles in the signal transduction pathways of many environmental and developmental stimuli in plants and animals. We demonstrated that the increase in cytosolic free Ca2+ concentration ([Ca2+]cyt) of Arabidopsis thaliana leaf cells was induced by exogenous application of jasmonic acid (JA). The elevation of [Ca2+]cyt was detected within 1 min after JA treatment by the fluorescence intensity using laser scanning confocal microscopy, and the elevated level of fluorescence was maintained during measuring time. With pretreatment of nifedipine (Nif), a nonpermeable L-type channel blocker, the fluorescence of [Ca2+]cyt induced by JA was inhibited in a dose-dependent manner. In contrast, verapamil, another L-type channel blocker, had no significant effect. Furthermore, Nif repressed JA-induced gene expression of JR1 but verapamil did not. JA-induced gene expression could be mimicked by higher concentration of extracellular Ca2+. W-7 [N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide], an antagonist of calmodulin (CaM), blocked the JA induction of JR1 expression while W-5 [N-(6-aminohexyl)-1-naphthalenesulfonamide], its inactive antagonist, had no apparent effect. These data provide the evidence that the influx of extracellular Ca2+ through Nif sensitive plasma membrane Ca2+ channel may be responsible for JA-induced elevation of [Ca2+]cyt and downstream gene expression, CaM may be also involved in JA signaling pathway.  相似文献   

20.
JAs are important hormones for plant development and defense, and JA signaling is regulated by diverse mechanisms. We have recently identified two RING-type ubiquitin ligases, RGLG3 and RGLG4, as essential JA signaling regulators. In this addendum, we discuss some characters of RGLG3 and RGLG4, which further support their important roles in JA pathway. RGLG3 and RGLG4 didn’t interact with known key factors of the core JA pathway, rather, it might target on unknown protein that negatively regulated JA signaling. RGLG3 and RGLG4 expression was suppressed by SA treatment in an NPR1-independent manner, and rglg3 rglg4 moderated SA-inhibited JA-responsive PDF1.2 expression, suggesting RGLG3 and RGLG4 took roles in SA-JA antagonism. RGLG3 and RGLG4 could be important players of a regulatory network and coordinated diverse signals to modulate JA signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号