首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five different primer combinations were used for the analysis of 152 B biotype Bemisia tabaci (Gennadius) individuals and five Trialeurodes vaporairiorum individuals collected from 19 counties and seven host plants in Shanxi province in China, respectively. The main objective of the present study was to use AFLP markers to determine the genetic diversity of B. tabaci populations collected from Shanxi Province. The use of these primer combinations allowed the identification of 127 polymorphic bands (52.26%) from 60 to 500 bp. The average number of polymorphic bands per primer was 25.4 while the range for the five primers was 20–32. The average degree of heterozygosity was 0.251, while the range for the five primers was 0.204–0.289. The results suggested definite genetic diversity among different B. tabaci populations. Cluster analysis showed that B. tabaci populations were firstly scattered to three genetic groups according to the regions, then every genetic group was scattered to several subgroups according to the host plants, which revealed the genetic variability of B biotype B. tabaci populations has been not only among different regions, but also among different host plants in Shanxi Province.  相似文献   

2.
The capacity of the B biotype of the whitefly, Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae), to invade has often been linked to its presumably wider host range than the non‐B indigenous biotypes. However, there are few experimental studies of the relative performance of the B biotype and non‐B biotypes on different host‐plant species. Here, we compared the performance of the B biotype and an indigenous non‐B biotype (China‐ZHJ‐1) of B. tabaci from Zhejiang, China on five commonly cultivated host plants, each from a different family: cotton, tobacco, cabbage, squash, and kidney bean. We also examined the effect of rearing host plants on the performance of the B biotype. Overall, the performance of the B biotype on the five species of plants was much better than that of the indigenous non‐B population. On tobacco, cabbage, and kidney bean, no individuals of ZHJ‐1 completed development to adulthood, whereas the B biotype developed successfully from egg to adult on all three plants. On squash, the B biotype survived better, developed to adulthood earlier and had a higher fecundity than ZHJ‐1. The two biotypes performed more equally on cotton, but even on this plant the B biotype female adults lived nearly twice as long as that of ZHJ‐1 and may have realized a higher life‐time fecundity. The B biotype also showed a substantial capacity to acclimatize to alternative host plants for improved survival and reproduction, on both highly suitable and marginally suitable host plants. We conclude that the host range of the B biotype of B. tabaci may be much wider than those of some indigenous biotypes, and this advantage of the B biotype over the non‐B biotypes may assist in its invasion and displacement of some indigenous biotypes in the field.  相似文献   

3.
Eighteen populations of Bemisia tabaci, collected from different geographic locations (North & Central America, the Caribbean, Africa, the Middle East, Asia and Europe), were studied to identify and compare biological and genetic characteristics that can be used to differentiate biotypes. The morphology of the fourth instar/pupal stage and compound eye structures of adults were investigated using scanning electron microscopy and found to be typical of the species among all biotypes and populations studied. Setae and spines of B. tabaci larval scales from the same colony were highly variable depending on the host plant species or leaf surface characteristics. The location and the morphology of caudal setae, characteristic of all B. tabaci studied to date, were present in all colonies. However, differences in adult body lengths and in the ability to induce phy to toxic disorders in certain plant species were found between biotypes or populations. The recently identified “B” biotype, characterised by a diagnostic esterase banding pattern and by its ability to induce phytotoxic responses in squash, honeysuckle and nightshade was readily distinguished from non-“B” biotype populations. None of the non-“B” biotypes studied, were found to induce phytotoxic responses. Nine populations examined showed typical “B” biotype characteristics, regardless of country of origin. All tested populations, determined as “B” or “B”-like biotypes successfully mated with other “B” biotype colonies from different geographic areas. Non-“B” biotype colonies did not interbreed with other biotypes. The B. tabaci populations were tested for their ability to transmit 15 whitefly-transmitted geminiviruses (WTGs) from different geographic areas with a wide range of symptom types. All WTGs were transmitted by the “B” biotype colonies and by most non-“B” biotype colonies, with the exception of three viruses found in ornamental plants which were non-transmissible by any colony. Some non-“B” biotypes would not transmit certain geminiviruses and some geminiviruses were more efficiently transmitted than were others.  相似文献   

4.
The role of random amplified polymorphic DNA (RAPD) markers in detecting intra-clonal genetic variability in vegetatively propagated UPASI-9 clone of tea (Camellia sinensis) was studied. Twenty five decamer primers were used, of which three did not amplify, three gave single bands and the rest of nineteen primers generated upto twelve bands (an average of 6.3 bands per primer). Twenty one primers exhibiting amplified products gave monomorphic banding patterns. Only one primer (OPE-17) gave a unique extra band of similar size in four plants.  相似文献   

5.
Chen S  Xia T  Chen S  Zhou Y 《Biochemical genetics》2005,43(3-4):189-201
Random amplified polymorphic DNA (RAPD) markers were used to measure genetic diversity of Coelonema draboides (Brassicaceae), a genus endemic to the Qilian Mountains of the Qinghai-Tibet Plateau. We sampled 90 individuals in 30 populations of Coelonema draboides from Datong and Huzhu counties of Qinghai Province in P.R. China. A total of 186 amplified bands were scored from the 14 RAPD primers, with a mean of 13.3 amplified bands per primer, and 87% (161 bands) polymorphic bands (PPB) was found. Analysis of molecular variance (AMOVA) shows that a large proportion of genetic variation (84.2%) resides among individuals within populations, while only 15.8% resides among populations. The species shows higher genetic diversity between individuals than other endemic and endangered plants. The RAPDs provide a useful tool for assessing genetic diversity of rare, endemic species and for resolving relationships among populations. The results show that the genetic diversity of this species is high, possibly allowing it to adapt more easily to environmental variations. The main factor responsible for the high level of differentiation within populations and the low level of diversity among populations is probably the outcrossing and long-lived nature of this species. Some long-distance dispersal, even among far separated populations, is also a crucial determinant for the pattern of genetic variation in the species. This distributive pattern of genetic variation of C. draboides populations provides important baseline data for conservation and collection strategies for the species. It is suggested that only populations in different habitats should be studied and protected, not all populations, so as to retain as much genetic diversity as possible.  相似文献   

6.
Abstract:  Analysis of the genetic diversity among 27 different geographical populations of Bemisia tabaci and determination of biotypes of B. tabaci in China based on amplified fragment-length polymorphism (AFLP) and the mitochondrial cytochrome oxidase I (mtDNA COI) gene sequences were conducted. In AFLP assay, the use of five primer combinations selected from 64 primer combinations allowed the identification of 229 polymorphic bands (97.03%) from 60 to 500 bp, suggesting abundant genetic diversity among different geographical populations of B. tabaci. To further identify biotypes of B. tabaci in China, the mtDNA COI gene sequences of nine representative populations from China, Israel and Spain were obtained. Molecular phylogenetic tree based on AFLP and mtDNA COI gene analyses revealed the presence, in China, of at least four different genetic groups of B. tabaci. B biotype, Q biotype and two non-B/Q biotype. B biotype was distributed nationwide. Q biotype was present only in the local region of China including the YunNan province and BeiJing city. This was also the first report about the invasion of Q biotype into China. Of the other two non-B/Q biotype groups, one was found in ShanDong and HeBei provinces, and another in ZheJiang province. The non-B/Q biotype ZheJiang population showed very high similarity with another Asian population India-IW ( AF110704 ) in mtDNA COI sequences and was possibly a Chinese indigenous population. The close monitoring of the Q biotype in locales of China where commercial plants were exported or imported, is now essential to avoid the further accidental distribution of the Q biotype.  相似文献   

7.
The pandemic of a severe form of cassava mosaic virus disease (CMVD) in East Africa is associated with abnormally high numbers of its whitefly vector, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). To determine whether a novel B. tabaci biotype was associated with the CMVD pandemic, reproductive compatibility, fecundity, nymphal development, and random amplified polymorphic DNA (RAPD) variability were examined in, and between, B. tabaci colonies collected from within the CMVD pandemic and non-pandemic zone in Uganda. In a series of reciprocal crosses carried out over two generations among the six CMVD pandemic and four non-pandemic zone cassava B. tabaci colonies, there was no evidence of mating incompatibility. All the crosses produced both female and male progeny in the F1 and F2 generations, which in a haplo-diploid species such as B. tabaci indicates successful mating. There also were no significant differences between the sex ratios for the pooled data of experimental crosses, between individuals from two different colonies and control crosses between individuals from the same colony. Only one instance of mating incompatibility occurred in a control cross between cassava B. tabaci from Uganda and cottonB. tabaci from India. Measures of fecundity of the pandemic and non-pandemic zone B. tabaci on four cassava varieties showed no significant differences in their fecundity, nymphal development or numbers surviving to adult eclosion. Cluster analysis of 26 RAPD bands using six 10-mer primers was concordant with the mating results, grouping the pandemic and non-pandemic zone colonies into a single large group, also including a B. tabaci colony collected from cassava in Tanzania. These results suggest that it is unlikely that the severe CMVD pandemic in East Africa is associated with a novel and reproductively isolated B. tabaci biotype.  相似文献   

8.
The whitefly, Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae), is generally considered to have originated from the Indian subcontinent, although little information has so far been collected on the molecular diversity of populations present in this region. The genetic diversity of B. tabaci populations from Karnataka State, south India was analysed using the random amplified polymorphic DNA‐polymerase chain reaction (RAPD‐PCR) technique and partial mitochondrial cytochrome oxidase I (mtCOI) gene sequences (689 bases) of 22 selected samples. A total of 108 whitefly samples analysed by RAPD‐PCR produced 89 polymorphic bands, and cluster analyses grouped them according to their geographic origin into ‘north’ and ‘south’ Karnataka. Phylogenetic analysis of mtCOI gene sequences with reference B. tabaci sequences from other Asian countries divided them into three genotypic clusters. Each cluster was supported with high bootstrap values (82–100%) and the individuals belonging to each cluster shared high nucleotide identities (up to 100%). This indicated at least three distinct genotypes, apparently indigenous to India, which are also present in China, Malaysia, Nepal, Pakistan, and Thailand. These coexist with the B biotype, which was first reported in India in 1999, and has since spread rapidly to other states in south India. The B biotype was more common than the indigenous B. tabaci, in locations where it had been present for more than 2 years. This is reminiscent of the situation in the Americas during the early 1990s, where the B biotype replaced existing biotypes and caused unprecedented losses to agriculture.  相似文献   

9.
Genetic diversity of 23 populations of Carthamus tinctorius L. and two populations of Carthamus lanatus L. in China was investigated using Sequence-related Amplified Polymorphism (SRAP). All populations could be uniquely distinguished by 30 primer combinations with 483 bands and 274 polymorphic bands which generated 57% of polymorphic ratio. Unweighed pair-group method of with arithmetical averages (UPGMA) cluster analysis enabled construction of a dendrogram for estimating genetic distances among different populations. The extreme variation was observed when No. 4 cultivated and No. 13 wild population of C. lanatus were grouped at GS = 0.58, and separated from 23 populations of C. tinctorius at GS = 0.10. The result suggested that the cultivated and wild populations of C. lanatus had close relationship with each other and far relationship with C. tinctorius. Dendrogram also revealed a large genetic variation in 23 C. tinctorius populations; different primer combinations allowed them distinctly distinguished one from others with relatively low genetic similarity. Furthermore, five typical representative fragments in C. lanatus were obtained by four most informative primer combinations, which provided a possibility to distinguish C. lanatus from the C. tinctorius evidently.  相似文献   

10.
应用SRAP分子标记方法对冬枣×宁梨巨枣的子代进行了分子鉴定及遗传多样性分析。采用构建基因池的方法对SRAP分子标记引物进行筛选,从88对引物中筛选出15对多态性好、主带清晰的引物,并对子代进行了真实性鉴定及多态性分析。结果表明:(1)15对引物共产生95个多态性条带,平均每对引物产生6.3个多态性条带,显示了较高的多态性比率。(2)80个子代中44个具有父本特征带,鉴定为真杂种。子代遗传多样性及UPGMA聚类分析表明,子代个体与亲本间的遗传相似系数在0.55~0.98之间,个体差异明显。该研究结果为枣树杂交育种提供了重要的分子证据。  相似文献   

11.
Allozyme variation was studied in threeNilaparvata lugens biotypes infesting specific rice varieties and a biotype infesting a weed grass,Leersia hexandra. Of the 20 enzymes inN. lugens for which activity was noted, 9 were polymorphic. Eleven enzyme loci were monomorphic for the same allele in all biotype populations; the rest were polymorphic for two or more alleles. The mean number of alleles per polymorphic locus was 2.3, while the mean number of alleles per locus was 1.5; heterozygosity ranged from 0.02 to 0.06 (biotype 1 > biotype 3 >Leersia-infesting biotype > biotype 2). Allelic frequency differences were observed in five loci among the four biotypes. However, the coefficient of genetic identity (I) of 0.99+ showed that the four biotype populations were genetically close relatives or merely populations ofN. lugens undergoing genetic differentiation. This work was partly supported by a financial grant received from the Directorate for Technical Cooperation and Humanitarian Aid, Switzerland.  相似文献   

12.
Pathogenic and genetic variability among seven populations of Phytophthora parasitica var. nicotianae from individual tobacco fields (Yunnan, Shandong, Henan, Heilongjiang, Shanxi, Fujian and Sichuan provinces) were investigated using pathogenicity and randomly amplified polymorphic DNA (RAPD) analyses; 63 strains were isolated from different fields of seven tobacco growing regions, using tobacco cv. Hongda as a baiting host. Pathogenic variability was evaluated in greenhouse studies using five tobacco cultivars that have different levels of resistance to tobacco black shank; 75 and 73% of the strains were pathogenic on M3 and M4, 29 and 33% on M1 and M2, and 94% were pathogenic on M5, respectively. Disease severity incited by different strains varied significantly on individual tobacco cultivars. The percentage of strains pathogenic on different cultivars varied among locations. Genotypic variation among 63 strains was evaluated by RAPD analysis. Ten primers detected 89 polymorphic bands. Cluster and principal coordinates analysed cluster groups. the minor group contained 26 strains, and major group contained 37 strains. Estimates of genetic diversity based on RAPD analysis ranged from 0.24 to 0.34 within populations to 0.36 among all strains from all populations. Phytophthora parasitica var. nicotianae populations were genotypically and phenotypically variable, but no distinct genotypic differences were identified among populations from the seven locations.  相似文献   

13.
Summary The ultrastructure of the endosymbionts of several populations of whitefly (Homoptera: Aleyrodidae) was examined using transmission electron microscopy. Consistent differences in morphology and relative number of endosymbionts were observed between species and biotypes of whitefly within the Bemisia taxon.Bemisia argentifolii (=B. tabaci B biotype) individuals from Hawaii, Florida, and Arizona contained two morphological types of microorganisms housed within the mycetocyte cells of immature whiteflies. In contrast, individuals from populations ofB. tabaci A biotype from Arizona and Mexico, andB. tabaci Jatropha biotype from Puerto Rico, consistently contained three distinct morphological types of microorganisms within their mycetocytes. Organisms fromB. tabaci A and Jatropha biotypes differed from each other in the relative frequency of each type of microorganism. These observations suggest that different whitefly biotypes may have variable combinations of micro-fauna, with some possibly unique to each group, and furthers the hypothesis that variation in whitefly endosymbionts may be associated with the development of biotypes.  相似文献   

14.
Salvia miltiorrhiza Bge is a traditional Chinese medicinal herb used as an important drug to cure cardiovascular diseases. In this work, inter simple sequence repeats (ISSR) and sequence related amplified polymorphism (SRAP) markers, were applied to assess the level and pattern of genetic diversity in five important cultivated populations of S. miltiorrhiza. Among these populations, 120 bands were amplified by 5 ISSR primers, of which all were polymorphic, and 110 polymorphic bands (90.16%) were observed in 122 bands amplified by 6 SRAP primers. A high levels of genetic diversity at the species level was detected with Hs = 0.1951, 0.1927 respectively. Analysis of molecular variance revealed that a greater proportion of total genetic variation existed within populations (86.64 and 84.83% respectively) rather than among populations (13.36 and 15.17% respectively). Cluster analysis divided the five populations into two groups. The genetic relationships among populations have low correlation with their geographical distribution (Mantel test; r = 0.4870 and 0.5740 respectively). The study indicated that both ISSR and SRAP markers were effective and reliable for assessing the degree of genetic variation of S. miltiorrhiza. Our results suggested that random collecting, preserving and planting seeds without deliberate selection might be an efficient way to conserve genetic resources of medicinal plants. Their effective use was also discussed on the further breeding.  相似文献   

15.
Three different DNA mapping techniques—RFLP, RAPD and AFLP—were used on identical soybean germplasm to compare their ability to identify markers in the development of a genetic linkage map. Polymorphisms present in fourteen different soybean cultivars were demonstrated using all three techniques. AFLP, a novel PCR-based technique, was able to identify multiple polymorphic bands in a denaturing gel using 60 of 64 primer pairs tested. AFLP relies on primers designed in part on sequences for endonuclease restriction sites and on three selective nucleotides. The 60 diagnostic primer pairs tested for AFLP analysis each distinguished on average six polymorphic bands. Using specific primers designed for soybean fromEco RI andMse I restriction site sequences and three selective nucleotides, as many as 12 polymorphic bands per primer could be obtained with AFLP techniques. Only 35% of the RAPD reactions identified a polymorphic band using the same soybean cultivars, and in those positive reactions, typically only one or two polymorphic bands per gel were found. Identification of polymorphic bands using RFLP techniques was the most cumbersome, because Southern blotting and probe hybridization were required. Over 50% of the soybean RFLP probes examined failed to distinguish even a single polymorphic band, and the RFLP probes that did distinguish polymorphic bands seldom identified more than one polymorphic band. We conclude that, among the three techniques tested, AFLP is the most useful.  相似文献   

16.
《Journal of Asia》2006,9(3):227-233
The genetic relatedness among Helicoverpa armigera (Hübner) occurring on different host plants prevailing in South India was studied using PCR-RAPD. Genomic DNA was isolated individually from five larvae collected from each of 10 different host plants (except in okra). PCR-RAPD analysis was carried out using a set of 20 random primers which had produced repeatable banding patterns from a original set of 60 primers. A set of 155 amplicon levels were available for analysis, of which 154 were polymorphic. An average of 7.75 bands per primer was recorded. Similarity coefficients based on the frequency of band sharing among host strains varied from 0.25 in cotton and sunflower to 0.72 in groundnut. Clustering analysis on the basis of the PCR-RAPD-generating band sharing indicated that most of the individuals occurring on niger, safflower, green gram, abutilon and lagasca clustered together, indicating greater genetic similarity among themselves, than those occurring on other crops. Furthermore, the pattern of genetic variation in the individuals collected from niger, safflower, green gram, groundnut, abutilon and lagasca was seem to be largely host-dependent.  相似文献   

17.
Bemisia tabaci (Gennadius) is considered to be the most economically important pest insect worldwide. The invasive variant, the Q biotype of B. tabaci was first identified in 2004, and has caused significant crop yield losses in Japan. The distribution and molecular characterization of the different biotypes of B. tabaci in Japan have been little investigated. In this study, B. tabaci populations were sampled from the Japanese Archipelago, the Amami Archipelago and the Ryukyu Islands between 2004 and 2008, and the nucleotide sequences of their mitochondrial cytochrome oxidase I genes were determined. Bayesian phylogenetic relationship analysis provided the first molecular evidence that the indigenous Japanese populations could be separated into four distinct genetic groups. One major native population from the Japanese Archipelago, given the genetic group name Lonicera japonica, was separated into an independent group, distinct from the other genetic groups. The second major population, the Nauru biotype in the Asia II genetic group, was identified in the Amami Archipelago and the Ryukyu Islands. Two distinct minor genetic groups, the Asia I and the China, were also identified. One invasive B‐related population belonging to the Mediterranean/Asia Minor/Africa genetic group has been identified in Honshu. All lineages generated by the phylogenetic analyses were supported by high posterior probabilities. These distinct indigenous B. tabaci populations developed in Japan under geographical and/or biological isolation, prior to recent invasions of the B and Q biotypes.  相似文献   

18.
Ten snap bean (Phaseolus vulgaris) genotypes were screened for polymorphism with 400 RAPD (random amplified polymorphic DNA) primers. Polymorphic RAPDs were scored and classified into three categories based on ethidium bromide staining intensity. An average of 5.19 RAPD bands were scored per primer for the 364 primers that gave scorable amplification products. An average of 2.15 polymorphic RAPDs were detected per primer. The results show that primer screening may reduce the number of RAPD reactions required for the analysis of genetic relationships among snap-bean genotypes by over 60%. Based on the analysis of the distribution of RAPD amplification, the same number of polymorphic RAPDs were amplified from different genotypes for all RAPD band intensity levels. A comparison of RAPD band amplification frequency among genotypes for the three categories of bands classified by amplification strength revealed a measurable difference in the frequencies of RAPDs classified as faint (weakly amplifying) compared to RAPD bands classified as bold (strongly amplifying) indicating a possible scoring error due to the underscoring of faint bands. Correlation analysis showed that RAPD bands amplified by the same primer are not more closely correlated then RAPD bands amplified by different primers but are more highly correlated then expected by chance. Pairwise comparisons of RAPD bands indicate that the distribution of RAPD amplification among genotypes will be a useful criterion for establishing RAPD band identity. For the average pairwise comparison of genotypes, 50% of primers tested and 15.8% of all scored RAPDs detected polymorphism. Based on RAPD data Nei's average gene diversity at a locus was 0.158 based on all scorable RAPD bands and 0.388 if only polymorphic RAPD loci were considered. RAPD-derived 1 relationships among genotypes are reported for the ten genotypes included in this study. The data presented here demonstrate that many informative, polymorphic RAPDs can be found among snap bean cultivars. These RAPDs may be useful for the unique identification of bean varieties, the organization of bean germplasm, and applications of molecular markers to bean breeding.  相似文献   

19.
The whitefly Bemisia tabaci (Gennadius) causes tremendous losses to agriculture by direct feeding on plants and by vectoring several families of plant viruses. The B. tabaci species complex comprises over 10 genetic groups (biotypes) that are well defined by DNA markers and biological characteristics. B and Q are amongst the most dominant and damaging biotypes, differing considerably in fecundity, host range, insecticide resistance, virus vectoriality, and the symbiotic bacteria they harbor. We used a spotted B. tabaci cDNA microarray to compare the expression patterns of 6000 ESTs of B and Q biotypes under standard 25 °C regime and heat stress at 40 °C. Overall, the number of genes affected by increasing temperature in the two biotypes was similar. Gene expression under 25 °C normal rearing temperature showed clear differences between the two biotypes: B exhibited higher expression of mitochondrial genes, and lower cytoskeleton, heat-shock and stress-related genes, compared to Q. Exposing B biotype whiteflies to heat stress was accompanied by rapid alteration of gene expression. For the first time, the results here present differences in gene expression between very closely related and sympatric B. tabaci biotypes, and suggest that these clear-cut differences are due to better adaptation of one biotype over another and might eventually lead to changes in the local and global distribution of both biotypes.  相似文献   

20.
The sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), is among the top 100 invasive pests in the world, and it causes serious agricultural damage and economic losses in many countries. More than 24 biotypes of the sweetpotato whitefly have been detected worldwide, of which the Q biotype has recently been reported to be a new invasive pest spreading throughout the world via trade in poinsettias, Euphorbia pulcherrima Willd. ex Klotzsch (Euphorbiaceae). In 2006, the Q biotype was first recorded in Taiwan in greenhouses, but not in the field, suggesting that the invasion of this biotype might be at an early stage in that country. The mitochondrial cytochrome oxidase I (COI) gene and 12 microsatellite loci were used to investigate the genetic structure of multiple B. tabaci Q biotype populations. The presence of only a few COI haplotypes and a low number of nucleotide differences suggest high genetic similarity among these populations. Microsatellite analyses also revealed low genetic differentiation and frequent gene flow among greenhouses. The molecular evidence supports the occurrence of a recent genetic bottleneck in the B. tabaci Q biotype. Bayesian cluster analyses indicated that at least two invasion events have occurred in Taiwan. Phylogenetic analyses of microsatellites support Q biotype migration among greenhouses, which was likely facilitated by the frequent movement of poinsettias between greenhouses. Future management strategies should focus on developing plantlet trade regulations to avoid further anthropogenic dispersal of the B. tabaci Q biotype among greenhouses in Taiwan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号