首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although artificial RNA motifs that can functionally replace the GNRA/receptor interaction, a class of RNA–RNA interacting motifs, were isolated from RNA libraries and used to generate designer RNA structures, receptors for non-GNRA tetraloops have not been found in nature or selected from RNA libraries. In this study, we report successful isolation of a receptor motif interacting with GAAC, a non-GNRA tetraloop, from randomized sequences embedded in a catalytic RNA. Biochemical characterization of the GAAC/receptor interacting motif within three structural contexts showed its binding affinity, selectivity and structural autonomy. The motif has binding affinity comparable with that of a GNRA/receptor, selectivity orthogonal to GNRA/receptors and structural autonomy even in a large RNA context. These features would be advantageous for usage of the motif as a building block for designer RNAs. The isolated motif can also be used as a query sequence to search for unidentified naturally occurring GANC receptor motifs.  相似文献   

2.
Natural RNAs often contain terminal loops consisting of GNRA (N=A, G, C, U; R=A, G) and their receptors, which bind to the loops via long-range RNA-RNA interactions. Among several known receptors, two characteristic structural elements have been identified that are termed the 11-nt motif (CCUAAG-UAUGG) and IC3 motif (CCCUAAC-GAGGG). These two motifs that share a similar secondary structure have been shown to exhibit distinctively different binding specificities. The 11-nt motif recognizes a GAAA loop with highest specificity among the known receptors, whereas the IC3 motif distinguishes GAAA from other GNRA loops less stringently than any other receptors. To identify the elements in the receptors that determine the binding specificity, a series of chimeric receptors derived from the two motifs were prepared and their properties were examined. We identified characteristic base-pairs and a particular U residue in the receptors as such elements by means of a gel mobility shift assay that evaluates the degree of the tetraloop-receptor interaction. The relationship between the elements and the specificity is discussed together with a model that describes a possible evolutional linkage between the two receptors.  相似文献   

3.
Terminal loops containing four nucleotides (tetraloops) are common in structural RNAs, and they frequently conform to one of three sequence motifs, GNRA, UNCG, or CUUG. Here we compare available sequences and secondary structures for rRNAs from bacteria, and we show that helices capped by phylogenetically conserved GNRA loops display a strong tendency to be of conserved length. The simplest interpretation of this correlation is that the conserved GNRA loops are involved in higher-order interactions, intramolecular or intermolecular, resulting in a selective pressure for maintaining the lengths of these helices. A small number of conserved UNCG loops were also found to be associated with conserved length helices, consistent with the possibility that this type of tetraloop also takes part in higher-order interactions.  相似文献   

4.
5.
Release 2.0.1 of the Structural Classification of RNA (SCOR) database, http://scor.lbl.gov, contains a classification of the internal and hairpin loops in a comprehensive collection of 497 NMR and X-ray RNA structures. This report discusses findings of the classification that have not been reported previously. The SCOR database contains multiple examples of a newly described RNA motif, the extruded helical single strand. Internal loop base triples are classified in SCOR according to their three-dimensional context. These internal loop triples contain several examples of a frequently found motif, the minor groove AGC triple. SCOR also presents the predominant and alternate conformations of hairpin loops, as shown in the most well represented tetraloops, with consensus sequences GNRA, UNCG and ANYA. The ubiquity of the GNRA hairpin turn motif is illustrated by its presence in complex internal loops.  相似文献   

6.
A comparison of picornavirus internal ribosome entry site (IRES) secondary structures revealed the existence of conserved motifs located on loops. We have carried out a mutational analysis to test their requirement for IRES-driven translation. The GUAA sequence, located in the aphthovirus 3A loop, did not tolerate substitutions that disrupt the GNRA motif. Interestingly, this motif was found at similar positions in all picornavirus IRESs, suggesting that it may form part of a tertiary-structure element. The RAAA tetranucleotide located in the 3B loop was conserved only in cardiovirus and aphthovirus. A mutational analysis of the RAAA motif revealed that activities of 3B loop mutants correlated with both the presence of a sequence close to CAAA at the new 3B loop and the absence of reorganization of the 3B and 3C stem-loops. In support of this conclusion, insertion of a large number of nucleotides close to the 3B loop, which was predicted to reorganize the 3B-3C stem-loop structure, led to defective IRES elements. We conclude that the aphthovirus IRES loops located at the most distal part of domain 3, which carries GNRA and RAAA motifs, are essential for IRES function.  相似文献   

7.
Specific recognitions of GNRA tetraloops by small helical receptors are among the most widespread long-range packing interactions in large ribozymes. However, in contrast to GYRA and GAAA tetraloops, very few GNRA/receptor interactions have yet been identified to involve GGAA tetraloops in nature. A novel in vitro selection scheme based on a rigid self-assembling tectoRNA scaffold designed for isolation of intermolecular interactions with A-minor motifs has yielded new GGAA tetraloop-binding receptors with affinity in the nanomolar range. One of the selected receptors is a novel 12 nt RNA motif, (CCUGUG ... AUCUGG), that recognizes GGAA tetraloop hairpin with a remarkable specificity and affinity. Its physical and chemical characteristics are comparable to those of the well-studied '11nt' GAAA tetraloop receptor motif. A second less specific motif (CCCAGCCC ... GAUAGGG) binds GGRA tetraloops and appears to be related to group IC3 tetraloop receptors. Mutational, thermodynamic and comparative structural analysis suggests that natural and in vitro selected GNRA receptors can essentially be grouped in two major classes of GNRA binders. New insights about the evolution, recognition and structural modularity of GNRA and A-minor RNA-RNA interactions are proposed.  相似文献   

8.
M Costa  F Michel 《The EMBO journal》1997,16(11):3289-3302
Terminal loops with a GNRA consensus sequence are a prominent feature of large self-assembling RNA molecules. In order to investigate tertiary interactions involving GNRA loops, we have devised an in vitro selection system derived from a group I ribozyme. Two selections, destined to isolate RNA sequences that would recognize two of the most widespread loops (GUGA and GAAA), yielded variants of previously identified receptors for those loops, and also some yet unrecognized, high-affinity binders with novel specificities towards members of the GNRA family. By taking advantage of available crystal structures, we have attempted to rationalize these results in terms of RNA-RNA contacts and to expose some of the structural principles that govern GNRA loop-mediated tertiary interactions; the role of loop nucleotide 2 in ensuring specific recognition by receptors is emphasized. More generally, comparison of the products of in vitro and natural selection is shown to provide insights into the mechanisms underlying the in vivo evolution of self-assembling RNA molecules.  相似文献   

9.
Interactions between GNRA tetraloops and their receptors are found frequently as modular units in various types of naturally occurring structured RNAs. Due to their functional importance, GNRA/receptor interactions have been studied extensively with regard to their 3D structures and biochemical and biophysical properties. Artificial non-natural GNRA/receptor modules have also been generated not only to obtain a better understanding of this class of motifs in natural RNA structures but also for application of these modular units to the design and construction of artificial RNA structures that can be used as platforms to generate functional RNAs applicable for nanobiotechnology. In this review, we present a survey of structures, functions, and analyses as well as artificial generation and application of GNRA/receptor interacting modules.  相似文献   

10.
Little is known about the tertiary structure of internal ribosome entry site (IRES) elements. The central domain of foot-and-mouth disease (FMDV) IRES, named 3 or I, contains a conserved GNRA motif, essential for IRES activity. We have combined functional analysis with RNA probing to define its structural organization. We have found that a UNCG motif does not functionally substitute the GNRA motif; moreover, binding of synthetic GNRA stem-loops to domain 3 was significantly reduced in RNAs bearing UCCG or GUAG substitutions. The apical region of domain 3 consists of a four-way junction where residues of the GNRA tetraloop are responsible for the organization of the adjacent stem-loops, as deduced from ribonucleases and dimethyl sulfate accessibility. A single A-to-G substitution in the fourth position of this motif led to a strong RNA reorganization, affecting several nucleotides away in the secondary structure of domain 3. The study of mutants bearing UNCG or GUAG tetraloops revealed lack of protection to chemical attack in native RNA at specific nucleotides relative to the parental GUAA, suggesting that the GNRA motif dictates the organization and stability of domain 3. This effect is likely mediated by the interaction with distant residues. Therefore, the GNRA motif plays a crucial role in the organization of IRES structure with important consequences on activity.  相似文献   

11.
Frequent use of the same tertiary motif by self-folding RNAs.   总被引:28,自引:7,他引:21       下载免费PDF全文
M Costa  F Michel 《The EMBO journal》1995,14(6):1276-1285
We have identified an 11 nucleotide RNA motif, [CCUAAG...UAUGG], that is extraordinarily abundant in group I and group II self-splicing introns at sites known, or suspected from co-variation analysis, to interact with hairpin terminal loops with a GNRA consensus sequence. Base substitution experiments using a ribozyme-substrate system derived from a group I intron reveal that this motif interacts preferentially with GAAA terminal loops and binds them with remarkable affinity, compared with other known combinations of GNRA loops and matched targets. A copy of the [CCUAAG...UAUGG] motif which is present in domain I of many group II introns is shown to interact with the GAAA terminal loop that caps domain V. This is the first interaction to be identified between these two domains, whose mutual recognition is known to be necessary and sufficient for group II ribozymic activity. We conclude that interaction of [CCUAAG...UAUGG] with GAAA loops is one of the most common solutions used by nature to solve the problem of compacting and bringing together RNA structural domains.  相似文献   

12.
GNRA tetraloops (N is A, C, G, or U; R is A or G) are basic building blocks of RNA structure that often interact with proteins or other RNA structural elements. Understanding sequence-dependent structural variation among different GNRA tetraloops is an important step toward elucidating the molecular basis of specific GNRA tetraloop recognition by proteins and RNAs. Details of the geometry and hydration of this motif have been based on high-resolution crystallographic structures of the GRRA subset of tetraloops; less is known about the GYRA subset (Y is C or U). We report here the structure of a GUAA tetraloop determined to 1.4 A resolution to better define these details and any distinctive features of GYRA tetraloops. The tetraloop is part of a 27-nt structure that mimics the universal sarcin/ricin loop from Escherichia coli 23S ribosomal RNA in which a GUAA tetraloop replaces the conserved GAGA tetraloop. The adenosines of the GUAA tetraloop form an intermolecular contact that is a commonplace RNA tertiary interaction called an A-minor motif. This is the first structure to reveal in great detail the geometry and hydration of a GUAA tetraloop and an A-minor motif. Comparison of tetraloop structures shows a common backbone geometry for each of the eight possible tetraloop sequences and suggests a common hydration. After backbone atom superposition, equivalent bases from different tetraloops unexpectedly depart from coplanarity by as much as 48 degrees. This variation displaces the functional groups of tetraloops implicated in protein and RNA binding, providing a recognition feature.  相似文献   

13.
A thermodynamic study of unusually stable RNA and DNA hairpins.   总被引:11,自引:0,他引:11       下载免费PDF全文
V P Antao  S Y Lai    I Tinoco  Jr 《Nucleic acids research》1991,19(21):5901-5905
About 70% of the RNA tetra-loop sequences identified in ribosomal RNAs from different organisms fall into either (UNCG) or (GNRA) families (where N = A, C, G, or U; and R = A or G). RNA hairpins with these loop sequences form unusually stable tetra-loop structures. We have studied the RNA hairpin GGAC(UUCG)GUCC and several sequence variants to determine the effect of changing the loop sequence and the loop-closing base pair on the thermodynamic stability of (UNCG) tetra-loops. The hairpin GGAG(CUUG)CUCC with the conserved loop G(CUUG)C was also unusually stable. We have determined melting temperatures (Tm), and obtained thermodynamic parameters for DNA hairpins with sequences analogous to stable RNA hairpins with (UNCG), C(GNRA)G, C(GAUA)G, and G(CUUG)C loops. DNA hairpins with (TTCG), (dUdUCG), and related sequences in the loop, unlike their RNA counterparts, did not form unusually stable hairpins. However, DNA hairpins with the consensus loop sequence C(GNRA)G were very stable compared to hairpins with C(TTTT)G or C(AAAA)G loops. The C(GATA)G and G(CTTG)C loops were also extra stable. The relative stabilities of the unusually stable DNA hairpins are similar to those observed for their RNA analogs.  相似文献   

14.
RNA tertiary interactions involving docking of GNRA (N; any base; R; purine) hairpin loops into helical stem structures on other regions of the same RNA are one of the most common RNA tertiary interactions. In this study, we investigated a tertiary association between a GAAA hairpin tetraloop in a small branching ribozyme (DiGIR1) and a receptor motif (HEG P1 motif) present in a hairpin structure on a separate mRNA molecule. DiGIR1 generates a 2', 5' lariat cap at the 5' end of its downstream homing endonuclease mRNA by catalysing a self-cleavage branching reaction at an internal processing site. Upon release, the 5' end of the mRNA forms a distinct hairpin structure termed HEG P1. Our biochemical data, in concert with molecular 3D modelling, provide experimental support for an intermolecular tetraloop receptor interaction between the L9 GAAA in DiGIR1 and a GNRA tetraloop receptor-like motif (UCUAAG-CAAGA) found within the HEG P1. The biological role of this interaction appears to be linked to the homing endonuclease expression by promoting post-cleavage release of the lariat capped mRNA. These findings add to our understanding of how protein-coding genes embedded in nuclear ribosomal DNA are expressed in eukaryotes and controlled by ribozymes.  相似文献   

15.
GNRA tetraloop-binding receptor interactions are key components in the macromolecular assembly of a variety of functional RNAs. In nature, there is an apparent bias for GAAA/11nt receptor and GYRA/helix interactions, with the former interaction being thermodynamically more stable than the latter. While past in vitro selections allowed isolation of novel GGAA and GUGA receptors, we report herein an in vitro selection that revealed several novel classes of specific GUAA receptors with binding affinities comparable to those from natural GAAA/11nt interactions. These GUAA receptors have structural homology with double-locked bulge RNA modules naturally occurring in ribosomal RNAs. They display mutational robustness that enables exploration of the sequence/phenotypic space associated to GNRA/receptor interactions through epistasis. Their thermodynamic self-assembly fitness landscape is characterized by a rugged neutral network with possible evolutionary trajectories toward natural GNRA/receptor interactions. High throughput sequencing analysis revealed synergetic mutations located away from the tertiary interactions that positively contribute to assembly fitness. Our study suggests that the repertoire of GNRA/receptor interactions is much larger than initially thought from the analysis of natural stable RNA molecules and also provides clues for their evolution towards natural GNRA/receptors.  相似文献   

16.
17.
Zhao Q  Huang HC  Nagaswamy U  Xia Y  Gao X  Fox GE 《Biopolymers》2012,97(8):617-628
The structures of four small RNAs each containing a different version of the UNAC loop were determined in solution using NMR spectroscopy and restrained molecular dynamics. The UMAC tetraloops (where M is A or C) exhibited a typical GNRA fold including at least one hydrogen bond between the first U and fourth C. In contrast, UGAC and UUAC tetraloops have a different orientation of the first and fourth residues, such that they do not closely mimic the GNRA fold. Although the UMAC tetraloops are excellent structural mimics of the GNRA tetraloop backbone, sequence comparisons typically do not reveal co‐variation between the two loop types. The limited covariation is attributed to differences in the location of potential hydrogen bond donors and acceptors as a result of the replacement of the terminal A of GNRA with C in the UMAC version. Thus, UMAC loops do not readily form the common GNRA tetraloop‐receptor interaction. The loop at positions 863‐866 in E. coli 16S ribosomal RNA appears to be a major exception. However, in this case the GNRA loop does not in fact engage in the usual base to backbone tertiary interactions. In summary, UMAC loops are not just an alternative sequence version of the GNRA loop family, but instead they expand the types of interactions, or lack thereof, that are possible. From a synthetic biology perspective their inclusion in an artificial RNA may allow the establishment of a stable loop structure while minimizing unwanted long range interactions or permitting alternative long‐range interactions. © 2012 Wiley Periodicals, Inc. Biopolymers 97: 617–628, 2012.  相似文献   

18.
19.
The eight-cysteine motif, a versatile structure in plant proteins.   总被引:12,自引:0,他引:12  
A number of protein sequences deduced from the molecular analysis of plant cDNA or genomic libraries can be grouped in relation to a defined number of cysteine residues located in distinct positions of their sequences. This is the case for a group of around 500 polypeptides from different species that contain a small domain (less than 100 amino acids residues) displaying a pattern of eight-cysteines in a specific order. The plant sequences containing this motif belong to proteins having different functions, ranging from storage, protection, enzyme inhibition and lipid transfer, to cell wall structure. The eight-cysteine motif (8CM) appears to be a structural scaffold of conserved helical regions connected by variable loops, as observed by three-dimensional structure analysis. It is proposed that the cysteine residues would form a network of disulfide bridges necessary, for the maintenance of the tertiary structure of the molecule together with the central helical core, while the variable loops would provide the sequences required for the specific functions of the proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号