首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The in vivo role of epidermal growth factor (EGF) is not well defined even though its effects on culture cells were well studied. To understand the developmental, physiological, and pathological roles of EGF, we have generated transgenic mice widely expressing human EGF with the use of the beta-actin promoter. EGF and transforming growth factor alpha (TGFalpha) bind with equal affinity to the EGF receptor, a transmembrane tyrosine kinase, to trigger various biological responses. EGF and TGFalpha signaling are implicated in the development of the reproductive system. EGF also plays a physiological role in reproduction. Removal of the salivary gland in rodents, which reduces circulating EGF, reduces spermatogenesis, which can be corrected by EGF replacement. Here we show that in our transgenic males, only few post-meiosis II gametes were found, and the mice were sterile. This resembles a common cause of infertility in humans. Furthermore, the transgenic males had reduced serum testosterone. Our findings contrast the previous report on transgenic mice overexpressing TGFalpha in testis, which showed normal spermatogenesis. These data suggest that EGF is the active ligand for EGF receptor reported in germ cells, and proper EGF expression is important for completion of spermatogenesis.  相似文献   

2.
The activity of carnitine acetyltransferase (acetyl-CoA:L-carnitine O-acetyltransferase) was found to be at least 50-fold higher than that of choline acetyltransferase in PC12 cells. Nerve growth factor stimulated both enzymes in a parallel manner with respect to concentration of NGF and culture time. The stimulation of both enzymes was completely inhibited by 10 M 6-thioguanine, an inhibitor of protein kinase N. Results are discussed with reference to the hypothesis that the two enzymes may be functionally related in neuronal cells.  相似文献   

3.
4.
Previous experiments have demonstrated that in the septo-hippocampal system choline acetyltransferase (ChAT) is induced by nerve growth factor (NGF) (Gnahn et al. (1983) Dev. Brain Res. 9, 45-52) and that hippocampal NGF and mRNANGF levels are correlated with the density of cholinergic innervation (Korsching et al. (1985) EMBO J. 4, 1389-1393). In the present investigation we have compared the developmental changes of ChAT, NGF, and mRNANGF levels in this system. During the postnatal development of the hippocampus the time courses of NGF and ChAT were well correlated including the most rapid increase between P12 and P14. This increase in hippocampal NGF was preceded by a corresponding increase in mRNANGF. The developmental changes in hippocampal NGF levels were also closely reflected by corresponding changes in the septum. This, together with previous observations (Korsching et al., 1985) that the adult septum, in spite of relatively high NGF levels, does not contain measurable quantities of mRNANGF, suggests that the NGF levels in the septum are determined by the quantity of NGF transported retrogradely from the field of innervation rather than by local synthesis. During the prenatal period hippocampal NGF levels were relatively high, whereas the mRNANGF was below the level of detection. Since the ingrowth of septal fibers, and with that also the removal of NGF by retrograde transport, begins around birth, the relatively high prenatal NGF levels probably result from an accumulation produced by a small copy number of mRNANGF prior to the removal of NGF by retrograde axonal transport. It is concluded that the correlation of the developmental changes in NGF and mRNANGF with the ChAT activity in the hippocampus further supports the concept of a physiological role of NGF in the central nervous system.  相似文献   

5.
Cysteine-rich intestinal protein (CRIP), which contains a double zinc finger motif, is a member of the Group 2 LIM protein family. Our results showed that the developmental regulation of CRIP in neonates was not influenced by conventional vs. specific pathogen-free housing conditions. Thymic and splenic CRIP expression was not developmentally regulated. A line of transgenic (Tg) mice that overexpress the rat CRIP gene was created. When challenged with lipopolysaccharide, the Tg mice lost more weight, exhibited increased mortality, experienced greater diarrhea incidence, and had less serum interferon-gamma (IFN-gamma) and more interleukin (IL)-6 and IL-10. Similarly, splenocytes from the Tg mice produced less IFN-gamma and IL-2 and more IL-10 and IL-6 upon mitogen stimulation. Delayed-type hypersensitivity response was less in the Tg mice. Influenza virus infection produced greater weight loss in the Tg mice, which also showed delayed viral clearance. The observed responses to overexpression of the CRIP gene are consistent with a role for this LIM protein in a cellular pathway that produces an imbalance in cytokine pattern favoring Th2 cytokines.  相似文献   

6.
Anovel nuclear factor kappaB (NF-kappaB) binding site has been identified within the promoter region of the mouse gene encoding choline acetyltransferase (ChAT), the enzyme that synthesizes acetylcholine and has been implicated in the cognitive deficits associated with aging and Alzheimer's disease. This binding site, which is located within the nerve growth factor (NGF)-responsive enhancer element, was recognized by the NF-kappaB protein p49 but not p65 or p50. p49 from both basal forebrain and PC12 nuclear extracts interacted with this specific sequence in electrophoretic mobility shift assays. Mutation of the NF-kappaB site caused an increase in NGF-induced promoter activation, whereas overexpression of p49 in NGF-differentiated PC12 cells caused a decrease in endogenous ChAT enzyme activity and a decrease in promoter activity that was specifically mediated through this NF-kappaB binding site. Treatment of PC12 cells with NGF resulted in a drastic reduction in nuclear p49 binding to the ChAT NF-kappaB site after 24 h, but nuclear p49 levels were not altered, suggesting that late NGF-mediated events prevent binding of p49 to the ChAT promoter by an unknown mechanism other than nuclear translocation. Decreased ChAT expression and increased NF-kappaB activity in the brain are associated with aging and Alzheimer's disease. These data indicate that p49 is a negative regulator of ChAT expression and suggest a possible mechanism for aging-associated declines in cholinergic function.  相似文献   

7.
8.
9.
Lohrengel B  Lu M  Bauer D  Roggendorf M 《Cytokine》2000,12(6):573-577
The production of recombinant woodchuck cytokines is an essential prerequisite to study the immune response to hepadnavirus infection in the woodchuck model. Woodchuck tumour necrosis factor-alpha (TNF-alpha) was expressed in mammalian cells and in Escherichia coli. A test system for the biological activity of woodchuck TNF-alpha was established on basis of its cytotoxic effect to the murine fibrosarcoma cell line L929. Recombinant TNF-alpha was purified and used for the production of neutralizing antisera.  相似文献   

10.
Alterations in regional brain concentration of dopamine (DA), norepinephrine (NE), serotonin (5-HT) and their metabolites were investigated in male BALB/c mice injected intraperitoneally with bacterial lipopolysaccharide (LPS, 2 mg kg(-1)) or recombinant murine tumor necrosis factor alpha (TNFalpha, 0.1 mg kg(-1)) at 2, 6, 12 and 24 h after the injection. At 2 h post-injection the LPS administration resulted in hypothermia, which was not apparent at later time points. No consistent effects were observed by either LPS or TNFalpha on peripheral leukocyte counts or plasma transaminase levels. Both LPS and TNFalpha slightly elevated NE metabolism in the striatum at 2-12 h. Concentrations of DA and its metabolites were significantly elevated only in the hypothalamus following TNFalpha at 24 h. Tumor necrosis factor alpha exerted pronounced effects on 5-HT metabolism in most brain regions at 2 h. Results suggest that the effect of LPS is more complex compared with TNFalpha because of the endogenous production of other cytokines including the TNFalpha.  相似文献   

11.
12.
Macrophages harvested from the peritoneal cavities of rats release a neutrophil chemotactic factor (MNCF) in response to stimulation with Gram-negative bacterial lipopolysaccharide (LPS). MNCF has been shown to be active in rats treated with dexamethasone, a glucocorticoid that usually inhibits the neutrophil migration induced in this species by interleukin (IL)-1, tumour necrosis factor alpha (TNFalpha), IL-8, C5a and leukotriene B(4) (LTB(4)). Here we report that macrophages harvested from peritoneal cavities of mice, and stimulated in vitro with LPS, also release a factor that induces neutrophil migration in dexamethasone-treated animals. This chemotactic activity was neutralized by the incubation of the LPS-stimulated macrophage supernatants with a purified polyclonal IgG anti-mouse TNFalpha. In addition, significant amounts of TNF were detected in the supernatants. The neutrophil migration induced by intraperitoneal administration of recombinant murine TNFalpha was also unaffected by pretreatment of the mice with dexamethasone. Moreover, neutrophil migration induced by intraperitoneal injection of LPS was completely blocked by pretreatment of the mice with a monoclonal antibody against murine TNFalpha. In conclusion, our results support the hypothesis that, in contrast to the role of TNF in rats (where it indirectly induces neutrophil migration), in mice, it may be an important mediator in the recruitment of neutrophils to inflammatory sites.  相似文献   

13.
P N Gilles  G Fey    F V Chisari 《Journal of virology》1992,66(6):3955-3960
It is well known that several inflammatory cytokines can modulate hepatocellular gene expression in a complex physiological process known as the hepatic acute-phase response. Since hepatitis B virus (HBV) characteristically induces a vigorous lymphomononuclear inflammatory response in the liver during acute and chronic hepatitis, it is possible that hepatocellular HBV gene expression may also be modulated by one or more of the cytokines produced by these cells. Using bacterial lipopolysaccharide (LPS) as a surrogate inducer of inflammatory cytokines in vivo, we have tested this hypothesis in a transgenic mouse model system. In experiments with two independent transgenic mouse lineages that express the HBV envelope region under the control of either HBV or cellular promoters, we observed a 50 to 80% reduction in the hepatic steady-state content of a 2.1-kb HBV mRNA following administration of a single intraperitoneal dose of LPS. The regulatory influence of several inflammatory cytokines known to be induced by LPS was also examined in this system. The negative regulatory effect of LPS was consistently reproduced by the administration of a single nontoxic dose of tumor necrosis factor alpha, and it was occasionally observed following the administration of high doses of alpha interferon and interleukin-6, while no effect was detectable in response to high-dose interleukin-1 alpha or to gamma interferon. These observations suggest that tumor necrosis factor alpha and perhaps other cytokines may activate a heretofore unsuspected intracellular pathway that negatively regulates HBV gene expression. The intracellular mechanism(s) responsible for this effect and its pathophysiologic relevance remain to be elucidated.  相似文献   

14.
Although in vitro studies suggest a role for sterol carrier protein-2 (SCP-2) in cholesterol trafficking and metabolism, the physiological significance of these observations remains unclear. This issue was addressed by examining the response of mice overexpressing physiologically relevant levels of SCP-2 to a cholesterol-rich diet. While neither SCP-2 overexpression nor cholesterol-rich diet altered food consumption, increased weight gain, hepatic lipid, and bile acid accumulation were observed in wild-type mice fed the cholesterol-rich diet. SCP-2 overexpression further exacerbated hepatic lipid accumulation in cholesterol-fed females (cholesterol/cholesteryl esters) and males (cholesterol/cholesteryl esters and triacyglycerol). Primarily in female mice, hepatic cholesterol accumulation induced by SCP-2 overexpression was associated with increased levels of LDL-receptor, HDL-receptor scavenger receptor-B1 (SR-B1) (as well as PDZK1 and/or membrane-associated protein 17 kDa), SCP-2, liver fatty acid binding protein (L-FABP), and 3α-hydroxysteroid dehydrogenase, without alteration of other proteins involved in cholesterol uptake (caveolin), esterification (ACAT2), efflux (ATP binding cassette A-1 receptor, ABCG5/8, and apolipoprotein A1), or oxidation/transport of bile salts (cholesterol 7α-hydroxylase, sterol 27α-hydroxylase, Na+/taurocholate cotransporter, Oatp1a1, and Oatp1a4). The effects of SCP-2 overexpression and cholesterol-rich diet was downregulation of proteins involved in cholesterol transport (L-FABP and SR-B1), cholesterol synthesis (related to sterol regulatory element binding protein 2 and HMG-CoA reductase), and bile acid oxidation/transport (via Oapt1a1, Oatp1a4, and SCP-x). Levels of serum and hepatic bile acids were decreased in cholesterol-fed SCP-2 overexpression mice, especially in females, while the total bile acid pool was minimally affected. Taken together, these findings support an important role for SCP-2 in hepatic cholesterol homeostasis.  相似文献   

15.
Several lines of evidence indicate that nerve growth factor is important for the development and maintenance of the basal forebrain cholinergic phenotype. In the present study, using rat primary embryonic basal forebrain cultures, we demonstrate the differential regulation of functional cholinergic markers by nerve growth factor treatment (24–96 h). Following a 96‐h treatment, nerve growth factor (1–100 ng/mL) increased choline acetyltransferase activity (168–339% of control), acetylcholine content (141–185%), as well as constitutive (148–283%) and K+‐stimulated (162–399%) acetylcholine release, but increased release was not accompanied by increased high‐affinity choline uptake. Enhancement of ACh release was attenuated by vesamicol (1 µm ), suggesting a vesicular source, and was abolished under choline‐free conditions, emphasizing the importance of extracellular choline as the primary source for acetylcholine synthesized for release. A greater proportion of acetylcholine released from nerve growth factor‐treated cultures than from nerve growth factor‐naïve cultures was blocked by voltage‐gated Ca2+ channel antagonists, suggesting that nerve growth factor modified this parameter of neurotransmitter release. Cotreatment of NGF (20 ng/mL) with K252a (200 nm ) abolished increases in ChAT activity and prevented enhancement of K+‐stimulated ACh release beyond the level associated with K252a, suggesting the involvement of TrkA receptor signaling. Also, neurotrophin‐3, neurotrophin‐4 and brain‐derived neurotrophic factor (all at 5–200 ng/mL) increased acetylcholine release, although they were not as potent as nerve growth factor and higher concentrations were required. High brain‐derived neurotrophic factor concentrations (100 and 200 ng/mL) did, however, increase release to a level similar to nerve growth factor. In summary, long‐term exposure (days) of basal forebrain cholinergic neurons to nerve growth factor, and in a less‐potent fashion the other neurotrophins, enhanced the release of acetylcholine, which was dependent upon a vesicular pool and the availability of extracellular choline.  相似文献   

16.

Introduction

The present study assessed the potential functions of interleukin (IL)-32α on inflammatory arthritis and endotoxin shock models using IL-32α transgenic (Tg) mice. The potential signaling pathway for the IL-32-tumor necrosis factor (TNF)α axis was analyzed in vitro.

Methods

IL-32α Tg mice were generated under control of a ubiquitous promoter. Two disease models were used to examine in vivo effects of overexpressed IL-32α: Toll-like receptor (TLR) ligand-induced arthritis developed using a single injection of lipopolysaccharide (LPS) or zymosan into the knee joints; and endotoxin shock induced with intraperitoneal injection of LPS and D-galactosamine. TNFα antagonist etanercept was administered simultaneously with LPS in some mice. Using RAW264.7 cells, in vitro effects of exogenous IL-32α on TNFα, IL-6 or macrophage inflammatory protein 2 (MIP-2) production were assessed with or without inhibitors for nuclear factor kappa B (NFκB) or mitogen-activated protein kinase (MAPK).

Results

Single injection of LPS, but not zymosan, resulted in development of severe synovitis with substantial articular cartilage degradation in knees of the Tg mice. The expression of TNFα mRNA in inflamed synovia was highly upregulated in the LPS-injected Tg mice. Moreover, the Tg mice were more susceptive to endotoxin-induced lethality than the wild-type control mice 48 hours after LPS challenge; but blockade of TNFα by etanercept protected from endotoxin lethality. In cultured bone marrow cells derived from the Tg mice, overexpressed IL-32α accelerated production of TNFα upon stimulation with LPS. Of note, exogenously added IL-32α alone stimulated RAW264.7 cells to express TNFα, IL-6, and MIP-2 mRNAs. Particularly, IL-32α -induced TNFα, but not IL-6 or MIP-2, was inhibited by dehydroxymethylepoxyquinomicin (DHMEQ) and U0126, which are specific inhibitors of nuclear factor kappa B (NFκB) and extracellular signal regulated kinase1/2 (ERK1/2), respectively.

Conclusions

These results show that IL-32α contributed to the development of inflammatory arthritis and endotoxin lethality. Stimulation of TLR signaling with LPS appeared indispensable for activating the IL-32α-TNFα axis in vivo. However, IL-32α alone induced TNFα production in RAW264.7 cells through phosphorylation of inhibitor kappa B (IκB) and ERK1/2 MAPK. Further studies on the potential involvement of IL-32α-TNFα axis will be beneficial in better understanding the pathology of autoimmune-related arthritis and infectious immunity.  相似文献   

17.
Transgenic mice overexpressing leptin (LepTg) exhibit substantial reductions in adipose mass. Since the binding of leptin to its receptor activates the sympathetic nervous system, we reasoned that the lean state of the LepTg mice could be caused by chronic lipolysis. Instead, the LepTg mice exhibited a low basal lipolysis state and their lean phenotype was not dependent on the presence of beta3-adrenergic receptors. In their white adipose tissue, protein levels of protein kinase A, hormone-sensitive lipase, and ADRP were not impaired. However, compared to normal mice, perilipin, perilipin mRNA, and cAMP-stimulated PKA activity were significantly attenuated. Overall, we demonstrate that the lean phenotype of the LepTg mice does not result in a chronically elevated lipolytic state, but instead in a low basal lipolysis state characterized by a decrease in perilipin and PKA activity in white fat.  相似文献   

18.
Regional distribution of choline acetyltransferase (CAT) and acetylcholinesterase (AChE) in seventeen regions of the rabbit CNS has been determined by means of the cation exchange radiometric method. A significant correlation has been found between the activities of AChE and CAT which allows computation of their potencies. A comparison between activities of the cholinergic enzymes in the human and rabbit brain has been discussed.  相似文献   

19.
We report here the effects of oral micronized estradiol and soy phytoestrogens on uterine weight, choline acetyltransferase (ChAT) and nerve growth factor (NGF) mRNAs in the frontal cortex and hippocampus of ovariectomized young and retired breeder rats. Within each age category, 15 bilaterally ovariectomized rats were randomized equally into three groups: control (OVX), estradiol (E2), and soy phytoestrogens (SBE). The OVX rats were fed a casein/lactalbumin-based control diet; the E2 rats were fed with the control diet with added estradiol; and the SBE rats were fed with the control diet with added soy phytoestrogens. After 8 weeks of treatment, blood, uteri, frontal cortex, and hippocampus were collected at necropsy. Results showed that the uterine weights and serum estradiol concentrations were significantly higher in the E2 group compared with those in the OVX and SBE groups. In the hippocampus of young rats, E2 treatment resulted in significantly higher NGF mRNA levels than no treatment (OVX), and NGF mRNA levels in the SBE group were intermediate between the E2 and OVX groups. ChAT mRNA levels were significantly higher in the frontal cortex of E2 and SBE-treated retired breeder rats compared to OVX retired breeder rats. There were no differences among treatment groups for ChAT mRNA levels in the frontal cortex of young rats and in the hippocampus of both young and retired breeder rats. Our data suggest that soy phytoestrogens may function as estrogen agonists in regulating ChAT and NGF mRNAs in the brain of female rats.  相似文献   

20.
The effects of reduced SBPase activity on growth and development were examined in a set of transgenic tobacco plants produced using an antisense construct driven by the ribulose bisphosphate carboxylase, small subunit promoter. Photosynthetic carbon assimilation rates and carbohydrate levels in source leaves were decreased in the antisense plants. Growth rate and total shoot biomass were reduced in the SBPase antisense plants, even in plants where SBPase activity was reduced by only 25%. Floral biomass also decreased in response to reductions in SBPase activity and the onset of flowering was delayed by 5-10 d. This is the first demonstration of a link between reproductive biomass and reductions in Calvin cycle enzyme activity using antisense plants. Furthermore, unexpected changes in the growth and development of the antisense plants were evident. Small reductions in SBPase activity (above 50% wild type) resulted in shorter plants with only a small decrease in stem biomass and specific leaf area. In contrast, plants with larger reductions in SBPase activity had an increase in specific leaf area and attained heights similar to that of the wild-type plants but with a much reduced stem biomass, largely due to a decrease in xylem tissue. This bi-modal response of growth to reductions in SBPase activity has similarities to changes in leaf and stem anatomy and morphology that accompany light acclimation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号