首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prostate cancer cells express prostate-specific membrane antigen (PSMA). We developed an IgM type monoclonal antibody against PSMA. The antibody was coupled to poly-L-lysine and thereafter this conjugate was mixed with cationic liposomes containing plasmid DNA. The antibody-liposome complex was tested whether it could deliver the gene of interest selectively to the PSMA positive cells. As assessed by beta-galactosidase reporter gene, the transfection efficiency was 13.2% with anti-PSMA-liposome complex as compared to 4% with control IgM liposome complex. In contrast, no such differences were observed in PSMA negative PC-3, DU145 and T24 cells. Furthermore, in the suicide gene therapy in vitro with thymidine kinase gene plus ganciclovir system, anti-PSMA liposome complex demonstrated a selective growth inhibitory effect on PSMA positive LNCaP cells but not on PSMA negative cell lines.  相似文献   

2.
3.
Several epidemiological studies have demonstrated that vitamin E is a chemopreventative agent for prostate cancer. alpha-Tocopheryl succinate (VES), a derivative of vitamin E, effectively modulates prostate cancer cell growth. However, little is known about the mechanisms regarding this action. Here we show that VES causes human prostate cancer cell LNCaP arrest at G1 phase. This effect is accomplished through VES significantly decreasing expression of the cell cycle regulatory proteins cyclin D1, D3, and E, cdk2 and 4, but not cdk6. Furthermore, VES reduces cdk4 kinase activity, Rb phosphorylation, and cyclin E mRNA expression. Recently there is increasing interest in the protective effect of the VES and selenium combination on prostate cancer. Here we show that VES and selenium work through different mechanisms to exert their inhibitory effects on prostate cancer cells. Taken together, our studies suggest that VES-mediated prostate cancer cell G1/S arrest is a consequence of the regulation of multiple molecules of the cell cycle regulatory machinery.  相似文献   

4.
Prostate cancer (PCa) is one of the most incident malignancies worldwide. Although efficient therapy is available for early-stage PCa, treatment of advanced disease is mainly ineffective and remains a clinical challenge. microRNA (miRNA) dysregulation is associated with PCa development and progression. In fact, several studies have reported a widespread downregulation of miRNAs in PCa, which highlights the importance of studying compounds capable of restoring the global miRNA expression. The main aim of this study was to define the usefulness of enoxacin as an anti-tumoral agent in PCa, due to its ability to induce miRNA biogenesis in a TRBP-mediated manner. Using a panel of five PCa cell lines, we observed that all of them were wild type for the TARBP2 gene and expressed TRBP protein. Furthermore, primary prostate carcinomas displayed normal levels of TRBP protein. Remarkably, enoxacin was able to decrease cell viability, induce apoptosis, cause cell cycle arrest, and inhibit the invasiveness of cell lines. Enoxacin was also effective in restoring the global expression of miRNAs. This study is the first to show that PCa cells are highly responsive to the anti-tumoral effects of enoxacin. Therefore, enoxacin constitutes a promising therapeutic agent for PCa.  相似文献   

5.
The results of several epidemiological studies have suggested that a soybean-based diet is associated with a lower risk of prostate cancer. We investigated the effect of the soy isoflavone genistein on the proliferation and contact-stimulated migration of rat prostatic carcinoma MAT-LyLu and AT-2 cell lines. Genistein almost completely inhibited the growth of both MAT-LyLu and AT-2 cells in the concentration range from 25 to 100 μM, but the addition of 1 μM genistein to the medium significantly stimulated the proliferation of both cell lines. Additionally, at concentrations above 25 μM, genistein showed a potent cytotoxic effect. However, the central finding of this study is that at physiologically relevant concentrations (1 μM and 10 μM), genistein inhibits the motility of prostate cancer cells stimulated by homo-and heterotypic contacts. These results show that at physiological concentrations, genistein exerts an inhibitory effect on the migration of prostate cancer cells and suggest that it may be one of the factors responsible for the anti-metastatic activity of plant isoflavonoids  相似文献   

6.
Superantigens (SAgs) are known to play a role in food poisoning, toxic shock syndrome and have been identified as a potential mediator of autoimmunity. Although much is known about the effects of SAgs on T cells, by comparison few studies have investigated how SAgs influence innate immune cells. In particular no study has examined how SAgs affect murine plasmacytoid dendritic cells (pDC). We report that in vivo administration of staphylococcal enterotoxin A (SEA) increased the number of pDCs in secondary lymphoid organs, and induced CD86 and CD40 expression. Similar to SEA activation of conventional DCs (cDCs), pDCs relied on T cells, but not on CD40. Nonetheless, pDCs strictly required IFNgamma for upregulation of CD86 and CD40, but cDCs did not depend upon IFNgamma for activation. Further, even though IFNgamma deficient pDCs were not activated by SEA, they were still capable of producing wild-type levels of IFNalpha in response to CpG oligodeoxynucleotide (ODN). The source of IFNgamma for pDC activation was not T cells, nor did pDCs themselves have to synthesize or bind IFNgamma, but the presence of IFNgamma was essential. After SEA stimulation, IFNgamma deficient mice fail to induce expression of the pDC dependent chemokines CXCL9, and demonstrated a defect in recruitment of pDCs to marginal zones of lymphoid organs. Thus, SEA exerts its combined effect on pDC activation, recruitment and chemokine induction through the action of IFNgamma. This fundamental dichotomy of the effects of SAgs on pDCs versus cDCs show how a non-PAMP from bacteria, can selectively and indirectly stimulate innate cell subpopulations much in the same way that differential TLR expression influences cells of the innate immune system.  相似文献   

7.
KLOTHO was originally identified as an aging-suppressor gene that causes a human aging-like phenotype when tested in KLOTHO-deficient-mice. Recent evidence suggests that KLOTHO functions as a tumor suppressor by inhibiting Wnt signaling. KLOTHO gene silencing, including DNA methylation, has been observed in some human cancers. Aberrant activation of Wnt signaling plays a significant role in aging, and its silencing may be related to prostate cancer and other types of cancers. Thus, we investigated whether the expression of the anti-aging gene KLOTHO was associated with epigenetic changes in prostate cancer cell lines. KLOTHO mRNA was detected in the 22Rv1 cell line while it was not detected in DU145 and PC-3 cell lines. The restoration of KLOTHO mRNA in the DU145 and PC-3 cell lines was induced with a DNA methyltransferase inhibitor. Methylation-specific PCR was performed to determine the specific CpG sites in the KLOTHO promoter responsible for expression. In addition, the level of methylation was assessed in each CpG by performing bisulfite sequencing and quantitative pyrosequencing analysis. The results suggested a remarkable inverse relationship between KLOTHO expression and promoter methylation in prostate cancer cell lines.  相似文献   

8.
9.
The murine leukemia virus-based semi-retroviral replicating vectors (MuLV-based sRRV) had been developed to improve safety and transgene capacity for cancer gene therapy. However, despite the apparent advantages of the sRRV, improvements in the in vivo transduction efficiency are still required to deliver therapeutic genes efficiently for clinical use. In this study, we established a gibbon ape leukemia virus (GaLV) envelope-pseudotyped semi-replication-competent retrovirus vector system (spRRV) which is composed of two transcomplementing replication-defective retroviral vectors termed MuLV-Gag-Pol and GaLV-Env. We found that the spRRV shows considerable improvement in efficiencies of gene transfer and spreading in both human glioblastoma cells and pre-established human glioblastoma mouse model compared with an sRRV system. When treated with ganciclovir after intratumoral injection of each vector system into pre-established U-87 MG glioblastomas, the group of mice injected with spRRV expressing the herpes simplex virus type 1-thymidine kinase (HSV1-tk) gene showed a survival rate of 100% for more than 150 days, but all control groups of mice (HSV1-tk/PBS-treated and GFP/GCV-treated gruops) died within 45 days after tumor injection. In conclusion, these findings suggest that intratumoral delivery of the HSV1-tk gene by the spRRV system is worthy of development in clinical trials for the treatment of malignant solid tumors.  相似文献   

10.
Age-dependent methylation of ESR1 gene in prostate cancer   总被引:4,自引:0,他引:4  
The incidence of prostate cancer increases dramatically with age and the mechanism underlying this association is unclear. Age-dependent methylation of estrogen receptor alpha (ESR1) gene has been previously implicated in other cancerous and benign diseases. We evaluated the age-dependent methylation of ESR1 in prostate cancer. The methylation status of ESR1 in 83 prostate cancer samples from patients aged 49 to 77 years (mean age at 67.4 years) was examined using the bisulfite genomic sequencing technique. The samples were divided into three age groups: men aged 60 years and under (n = 14), men aged 61-70 years (n = 40), and men aged over 70 years (n = 29). Overall, ESR1 promoter methylation was detected in 54 out of 83 (65.1%) prostate samples. The methylation rate of ESR1 increased dramatically with age from 50.0% in patients aged 60 years and under to 89.7% for patients aged 70 years and over. Logistic regression analyses revealed that age and Gleason score were the only variables that affect incidence of ESR1 methylation; other clinical factors such as prostate-specific antigen level and clinical stage did not. We also calculated ESR1 methylation density (the percentage of methylated CpGs among all CpGs within the analyzed region) and severity (the percentage of methylated CpG alleles) for each sample analyzed. Multiple regression analyses showed a positive correlation between age and methylation density (beta, 0.35; P, 0.012; 95% CI, 0.26-2.01); while Gleason score was positively associated with methylation severity (beta, 0.45; P, 0.018; 95% CI, 1.04-4.26). These findings suggest that methylation of ESR1 is both age-dependent and tumor differentiation-dependent and age-dependent methylation of ESR1 may represent a mechanism linking aging and prostate cancer.  相似文献   

11.
12.
Adrenomedullin (AM) is a multifunctional peptide expressed in the normal and malignant prostate, and in prostate cancer cells. To elucidate the potential role of AM in prostate cancer, we have transfected the human AM gene into PC-3, DU 145, and LNCaP prostate cancer cells. Northern blot, Western blot, and radioimmunoassay techniques confirmed an increase in the synthesis and secretion of the 6kDa mature peptide, in the AM-transfected clones. Proliferation and cell cycle assays demonstrated that AM overexpression inhibited cell proliferation in PC-3 and LNCaP cells through a G0/G1 cell cycle arrest, but not in DU 145 cells. In vivo growth assays also confirmed that, at least in PC-3, AM produced a very significant reduction of tumor volume. In addition, the three cell lines expressed the CL/RCP/RAMP-2 receptor complex by RT-PCR, which suggests that AM peptide acts through an autocrine loop in prostate cancer cells. Although cAMP elevation is the most common pathway involved in AM signalling, stimulation of PC-3, DU 145, and LNCaP with synthetic AM did not increase intracellular cAMP. However, short-term stimulation of PC-3 cells with synthetic AM increased ERK1/2 activation. On the contrary, long-term stimulation, or AM overexpression, caused a reduction in the basal activation of ERK1/2. In summary, our results demonstrate that AM (either overexpressed or exogenously added) causes an inhibition of prostate cancer cell growth. This inhibition does not depend on changes in intracellular cAMP levels, but may be related to ERK1/2 activation.  相似文献   

13.

Background

One of the most commonly used vectors for gene therapy is the adenoviral vector; its ability to tightly regulate transgene expression is critical for optimizing therapeutic outcomes. The tetracycline-regulated system (especially the Tet-On system) for gene expression is one of the most valuable tools for controlling gene expression. The major problem of an adenoviral vector carrying a Tet-On system is suboptimal regulation of transgene expression.

Results

We constructed a single adenoviral vector carrying in its E1 region a novel “all-in-one” Tet-On system with an autoregulatory loop. This system had improved Dox-inducible gene expression in terms of low basal expression, high induced expression and high responsiveness to Dox. To our knowledge, this is the first reported adenovirus-based, all-in-one Tet-On system with an autoregulatory loop inserted into a single region of adenoviral genome. This system was further tested by inducible expression of soluble tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL). The adenovirus that expressed soluble TRAIL under the control of this novel Tet-On system showed tumor-derived cells inhibitory activity in SW480 cells only under induced conditions.

Conclusions

Our novel, single adenoviral vector carrying in its E1 region an all-in-one Tet-On system with an autoregulatory loop displayed tight regulation of transgene expression in vitro. This system has great potential for a variety of applications, including gene therapy and the study of gene function.  相似文献   

14.
Androgens play a major role in the growth and survival of primary prostate tumors. The molecular mechanisms involved in prostate cancer progression are not fully understood but genes that are regulated by androgens clearly influence this process. We searched for new androgen-regulated genes using the Affymetrix GeneChip Human Genome U95 Set in the androgen-sensitive LNCaP prostate cancer cell line. Analysis of gene expression profiles revealed that myosin light chain kinase (MLCK) mRNA levels were markedly down-regulated by the synthetic androgen R1881. The microarray data were confirmed by ribonuclease protection assays. RNA and protein analyses revealed that LNCaP cells express both long (non-muscle) and short (smooth muscle) isoforms, and that both isoforms are down-regulated by androgens. Taken together, these data identify MLCK as a novel downstream target of the androgen signalling pathway in prostate cells.  相似文献   

15.
16.
Crk (C10 regulator of kinase) adaptor proteins are highly expressed in many types of human cancers and often contribute to aggressive cancer phenotypes. Crk II, a member of CRK family, has been reported to regulate cell migration and metastasis in breast cancer cells. However, its role in other cancer types has not been reported. In this study, we investigated the molecular function of Crk II in prostate cancer (PCa) cells (CWR-22rv1) in vitro and using a mouse tumor model. Results showed that Crk II knockdown by shRNA-mediated silencing (Crk II-shRNA) in the PCa cells significantly inhibited both cancer cell migration and invasion in cell culture study. Crk II-shRNA cancer cells also significantly decreased colony formation in vitro, but had no significant reduction of tumor volume after 4 weeks of cancer cell xenografting in vivo when compared to the scramble control. Interestingly, Crk II-shRNA cancer cells showed a greatly reduced level of insulin-like growth factor 1 receptor (IGF-1R) and decreased signaling of the IGF-1R/PI3K/Akt axis upon IGF-1 ligand stimulation. A close interaction between Crk II and IGF-1R was demonstrated upon co-immunoprecipitation of IGF-1R with Crk II protein. Further, treatment of cells with either proteosomal degradation or protein synthesis inhibitor showed higher proportion of ubiquitin-associated IGF-1R and faster degradation of IGF-1R in Crk II-shRNA cells in comparison with that in the control cancer cells. Taken together, these data suggest that Crk II plays an important role in the regulation of IGF-1R protein stability and affects downstream of IGF-1R signaling pathways. Therefore, targeting Crk-II can block IGF-1R growth signaling and suppress cancer cell invasion and progression.  相似文献   

17.
18.
19.
Heparin affin regulatory peptide (HARP) is an 18 kDa heparin-binding protein that plays a key role in tumor growth. We showed previously that the synthetic peptide P(111-136) composed of the last 26 HARP amino acids inhibited HARP-induced mitogenesis. Here, to identify the exact molecular domain involved in HARP inhibition, we investigated the effect of the shorter basic peptide P(122-131) on DU145 cells, which express HARP and its receptor protein tyrosine phosphatase beta/zeta (RPTPbeta/zeta). P(122-131) was not cytotoxic; it dose-dependently inhibited anchorage-independent growth of DU145 cells. Binding studies using biotinylated P(122-131) indicated that this peptide interfered with HARP binding to DU145 cells. Investigation of the mechanisms involved suggested interference, under anchorage-independent conditions, of P(122-131) with a HARP autocrine loop in an RPTPbeta/zeta-dependent fashion. Thus, P(122-131) may hold potential for the treatment of disorders involving RPTPbeta/zeta.  相似文献   

20.
The generation of fiber-modified adenoviral vector has proven difficult. In the paper, we developed a new system for rapid construction of fiber-modified adenoviral vector containing foreign peptides in the HI loop or C-terminal of the fiber knob. The new system was established through the following processes. First, a unique BamHI mutation was made in the genome of Ad5 without causing amino acid change. Second, two unique restriction enzymes BamHI and SfuI, both with sticky end, were introduced in the HI loop or C-terminal of Ad5 fiber knob. Third, a lacza expression cassette was placed between BamHI and SfuI sites for a quick identification of positive cloning based on white-blue color screening. This system allows generation of recombinant adenoviral vector by a single step, in vitro ligation followed by quick white-color positive clone screening. To prove the principle of the method, Ad5HI-RGD by modifying HI-loop of the fiber knob with RGD motif and Ad5Cter-PK7 by modifying C-terminal of the knob with poly-lysine (pK7) were successfully generated in vitro. Ad5 with a knob modified in the HI loop of the fiber with Tat-PTD, NGR or SIKVAV peptide were also successfully developed. The transduction of the modified viruses for Hela, U87 MG and MDA-MB-231 cells was investigated in vitro compared with unmodified Ad5. In conclusion, the new vector system allows for a rapid generation of fiber-mutant adenovirus and provides useful tool for gene function analysis and cancer gene therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号