首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Summary Two tetrameric secondary alcohol dehydrogenases (ADHs), one from the mesophileClostridium beijerinckii (CBADH) and the other from the extreme thermophileThermoanaerobacter brockii (TBADH), share 75% sequence identity but differ by 26°C in thermal stability. To explore the role of linear segments of these similar enzymes in maintaining the thermal stability of the thermostable TBADH, a series of 12 CBadh and TBadh chimeric genes and the two parental wild-type genes were expressed inEscherichia coli, and the enzymes were isolated, purified and characterized. The thermal stability of each chimeric enzyme was approximately exponentially proportional to the content of the amino acid sequence of the thermophilic enzyme, indicating that the amino acid residues contributing to the thermal stability of TBADH are distributed along the whole protein molecule. It is suggested that major structural elements of thermal stability may reside among the nine discrepant amino acid residues between the N-terminal 50-amino acid residues of TBADH and CBADH.  相似文献   

2.
A comparison of the three-dimensional structures of the closely related mesophilic Clostridium beijerinckii alcohol dehydrogenase (CBADH) and the hyperthermophilic Thermoanaerobacter brockii alcohol dehydrogenase (TBADH) suggested that extra proline residues in TBADH located in strategically important positions might contribute to the extreme thermal stability of TBADH. We used site-directed mutagenesis to replace eight complementary residue positions in CBADH, one residue at a time, with proline. All eight single-proline mutants and a double-proline mutant of CBADH were enzymatically active. The critical sites for increasing thermostability parameters in CBADH were Leu-316 and Ser-24, and to a lesser degree, Ala-347. Substituting proline for His-222, Leu-275, and Thr-149, however, reduced thermal stability parameters. Our results show that the thermal stability of the mesophilic CBADH can be moderately enhanced by substituting proline at strategic positions analogous to nonconserved prolines in the homologous thermophilic TBADH. The proline residues that appear to be crucial for the increased thermal stability of CBADH are located at a beta-turn and a terminating external loop in the polypeptide chain. Positioning proline at the N-caps of alpha-helices in CBADH led to adverse effects on thermostability, whereas single-proline mutations in other positions in the polypeptide had varying effects on thermal parameters. The finding presented here support the idea that at least two of the eight extra prolines in TBADH contribute to its thermal stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号