首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a stochastic cellular automaton model for the behavior of limb bud precartilage mesenchymal cells undergoing chondrogenic patterning. This "agent-oriented" model represents cells by points on a lattice that obey rules motivated by experimental findings. The "cells" follow these rules as autonomous agents, interacting with other cells and with the microenvironments cell activities produce. The rules include random cell motion, production and lateral deposition of a substrate adhesion molecule (SAM, corresponding to fibronectin), production and release of a diffusible growth factor ("activator," corresponding to TGF-beta) that stimulates production of the SAM, and another diffusible factor ("inhibitor") that suppresses the activity of the activator. We implemented the cellular automaton on a two-dimensional (2D) square lattice to emulate the quasi-2D micromass culture extensively used to study patterning in avian limb bud precartilage cells. We identified parameters that produce nodular patterns that resemble, in size and distribution, cell condensations in leg-cell cultures, thus establishing a correspondence between in vitro and in silico results. We then studied the in vitro and in silico micromass cultures experimentally. We altered the standard in vitro micromass culture by diluting the initial cell density, transiently exposing it to exogenous activator, suppressing the inhibitor, and constitutively activating fibronectin production. We altered the standard in silico micromass culture in each case by changing the corresponding parameter. In vitro and in silico experiments agreed well. We also used the model to test hypotheses for differences in the in vitro patterns of cells derived from chick embryo forelimb and hindlimb. We discuss the applicability of this model to limb development in vivo and to other organ development.  相似文献   

2.
Hendrata M  Yang Z  Lux R  Shi W 《PloS one》2011,6(7):e22169
Identifying essential factors in cellular interactions and organized movement of cells is important in predicting behavioral phenotypes exhibited by many bacterial cells. We chose to study Myxococcus xanthus, a soil bacterium whose individual cell behavior changes while in groups, leading to spontaneous formation of aggregation center during the early stage of fruiting body development. In this paper, we develop a cell-based computational model that solely relies on experimentally determined parameters to investigate minimal elements required to produce the observed social behaviors in M. xanthus. The model verifies previously known essential parameters and identifies one novel parameter, the active turning, which we define as the ability and tendency of a cell to turn to a certain angle without the presence of any obvious external factors. The simulation is able to produce both gliding pattern and spontaneous aggregation center formation as observed in experiments. The model is tested against several known M. xanthus mutants and our modification of parameter values relevant for the individual mutants produces good phenotypic agreements. This outcome indicates the strong predictive potential of our model for the social behaviors of uncharacterized mutants and their expected phenotypes during development.  相似文献   

3.
Xu H  Wang H  Zhuang L  Yan B  Yu Y  Wei Z  Zhang Y  Dyck LE  Richardson SJ  He J  Li X  Kong J  Li XM 《The FEBS journal》2008,275(14):3718-3728
We have shown that quetiapine, a new antipsychotic drug, protects cultured cells against oxidative stress-related cytotoxicities induced by amyloid beta (Abeta)25-35, and that quetiapine prevents memory impairment and decreases Abeta plaques in the brains of amyloid precursor protein (APP)/presenilin-1 (PS-1) double-mutant mice. The aim of this study was to understand why quetiapine has these protective effects. Because the cytotoxicity of both Abeta(25-35) and Abeta(1-40) requires fibril formation, our first experiments determined the effect of quetiapine on Abeta(25-35) aggregation. Quetiapine inhibited Abeta(25-35) aggregation in cell-free aqueous solutions and blocked the fibrillar aggregation of Abeta(25-35), as observed under an electron microscope. We then investigated why quetiapine inhibits Abeta(25-35) aggregation. During the aggregation of Abeta(25-35), a hydroxyl radical (OH*) was released, which in turn amplified Abeta(25-35) aggregation. Quetiapine blocked OH*-induced Abeta(25-35) aggregation and scavenged the OH* produced in the Fenton system and in the Abeta(25-35) solution, as analyzed using electron paramagnetic resonance spectroscopy. Furthermore, new compounds formed by quetiapine and OH* were observed in MS analysis. Finally, we applied Abeta(25-35) to PC12 cells to observe the effect of quetiapine on living cells. Abeta(25-35) increased levels of intracellular reactive oxygen species and calcium in PC12 cells and caused cell death, but these toxic effects were prevented by quetiapine. These results demonstrate an anti-oxidative stress mechanism of quetiapine, which contributes to its protective effects observed in our previous studies and explains the effectiveness of this drug for Alzheimer's disease patients with psychiatric and behavioral complications.  相似文献   

4.
Optimedin, also known as olfactomedin 3, belongs to a family of olfactomedin domain-containing proteins. It is expressed in neural tissues and Pax6 is involved in the regulation of its promoter. To study possible effects of optimedin on the differentiation of neural cells, we produced stably transfected PC12 cell lines expressing optimedin under a tetracycline-inducible promoter. Cells expressing high levels of optimedin showed higher growth rates and stronger adhesion to the collagen extracellular matrix as compared with control PC12 cells. After stimulation with nerve growth factor (NGF), optimedin-expressing cells demonstrated elevated levels of N-cadherin, beta-catenin, alpha-catenin and occludin as compared with stimulated, control PC12 cells. Expression of optimedin induced Ca(2+)-dependent aggregation of NGF-stimulated PC12 cells and this aggregation was blocked by the expression of N-cadherin siRNA. Expression of optimedin also changed the organization of the actin cytoskeleton and inhibited neurite outgrowth in NGF-stimulated PC12 cells. We suggest that expression of optimedin stimulates the formation of adherent and tight junctions on the cell surface and this may play an important role in the differentiation of the brain and retina through the modulation of cytoskeleton organization, cell-cell adhesion and migration.  相似文献   

5.
Cell growth in size is a complex process coordinated by intrinsic and environmental signals. In a research work performed by a different group, size distributions of an exponentially growing population of mammalian cells were used to infer cell-growth rate in size. The results suggested that cell growth was neither linear nor exponential, but subject to size-dependent regulation. To explain the observed growth pattern, we built a mathematical model in which growth rate was regulated by the relative amount of mRNA and ribosomes in a cell. Under the growth model and a stochastic division rule, we simulated the evolution of a population of cells. Both the sampled growth rate and size distribution from this in silico population agreed well with experimental data. To explore the model space, alternative growth models and division rules were studied. This work may serve as a starting point to understand the mechanisms behind cell growth and size regulation using predictive models.  相似文献   

6.
Cell growth in size is a complex process coordinated by intrinsic and environmental signals. In a research work performed by a different group, size distributions of an exponentially growing population of mammalian cells were used to infer cell-growth rate in size. The results suggested that cell growth was neither linear nor exponential, but subject to size-dependent regulation. To explain the observed growth pattern, we built a mathematical model in which growth rate was regulated by the relative amount of mRNA and ribosomes in a cell. Under the growth model and a stochastic division rule, we simulated the evolution of a population of cells. Both the sampled growth rate and size distribution from this in silico population agreed well with experimental data. To explore the model space, alternative growth models and division rules were studied. This work may serve as a starting point to understand the mechanisms behind cell growth and size regulation using predictive models.  相似文献   

7.
Rotating wall vessel bioreactors (RWVs) constitute dynamic suspension culture venues for tissue engineering. Quantitative real-time assessment of the kinetics of cell-cell aggregation in RWVs can yield mechanistic information about the initial steps leading to the assembly of individual cells into tissue-like constructs. In our imaging system, fluorescently labeled cells suspended in a HARV-type RWV were irradiated by a laser-beam. Emission was recorded by a camera mounted at 90 degrees to the excitation plane. Using macro lenses, the system identified approximately 5 microm particles from a 5 cm working distance, distinguished aggregated 20 microm microspheres from larger (45 and 90 microm) microspheres, and plotted local trajectories of microspheres and cells. Sizes of PC12 cells assessed by our system matched conventional measurements. We validated the system's ability to follow HepG2 and PC12 aggregation in real time over 24h of RWV culture. Taken together, our system provides the means to measure and analyze in real time the processes that lead to the 3D tissue-like assembly of diverse cell types into spheroids. Future studies include development of intelligent feedback algorithms, allowing automatic control over RWV rotational speed required to maintain aggregating cells and nascent tissue in continual free fall.  相似文献   

8.
How do individual epithelial cells (ECs) organize into multicellular structures? ECs are studied in vitro to help answer that question. Characteristic growth features include stable cyst formation in embedded culture, inverted cyst formation in suspension culture, and lumen formation in overlay culture. Formation of these characteristic structures is believed to be a consequence of an intrinsic program of differentiation and de-differentiation. To help discover how such a program may function, we developed an in silico analogue in which space, events, and time are discretized. Software agents and objects represent cells and components of the environment. "Cells" act independently. The "program" governing their behavior is embedded within each in the form of axioms and an inflexible decisional process. Relationships between the axioms and recognized cell functions are specified. Interactions between "cells" and environment components during simulation give rise to a complex in silico phenotype characterized by context-dependent structures that mimic counterparts observed in four different in vitro culture conditions: a targeted set of in vitro phenotypic attributes was matched by in silico attributes. However, for a particular growth condition, the analogue failed to exhibit behaviors characteristic of functionally polarized ECs. We solved this problem by following an iterative refinement method that improved the first analogue and led to a second: it exhibited characteristic differentiation and growth properties in all simulated growth conditions. It is the first model to simultaneously provide a representation of nonpolarized and structurally polarized cell types, and a mechanism for their interconversion. The second analogue also uses an inflexible axiomatic program. When specific axioms are relaxed, growths strikingly characteristic of cancerous and precancerous lesions are observed. In one case, the simulated cause is aberrant matrix production. Analogue design facilitates gaining deeper insight into such phenomena by making it easy to replace low-resolution components with increasingly detailed and realistic components.  相似文献   

9.
Dictyostelium discoideum (Dd) is a widely studied model system from which fundamental insights into cell movement, chemotaxis, aggregation and pattern formation can be gained. In this system aggregation results from the chemotactic response by dispersed amoebae to a travelling wave of the chemoattractant cAMP. We have developed a model in which the cells are treated as discrete points in a continuum field of the chemoattractant, and transduction of the extracellular cAMP signal into the intracellular signal is based on the G protein model developed by Tang & Othmer. The model reproduces a number of experimental observations and gives further insight into the aggregation process. We investigate different rules for cell movement the factors that influence stream formation the effect on aggregation of noise in the choice of the direction of movement and when spiral waves of chemoattractant and cell density are likely to occur. Our results give new insight into the origin of spiral waves and suggest that streaming is due to a finite amplitude instability.  相似文献   

10.
Autophagy is closely associated with cerebral ischaemia/reperfusion injury, but the underlying mechanisms are unknown. We investigated whether Spautin-1 ameliorates cerebral ischaemia/reperfusion injury by inhibiting autophagy and whether its derived pyroptosis is involved in this process. We explored the mechanism of Spautin-1 in cerebral ischaemia/reperfusion. To answer these questions, healthy male Sprague-Dawley rats were exposed to middle cerebral artery occlusion for 60 minutes followed by reperfusion for 24 hours. We found that cerebral ischaemia/reperfusion increased the expression levels of autophagy and pyroptosis-related proteins. Treatment with Spautin-1 reduced the infarct size and water content and restored some neurological functions. In vitro experiments were performed using oxygen-glucose deprivation/reoxygenation to model PC12 cells. The results showed that PC12 cells showed a significant decrease in cell viability and a significant increase in ROS and autophagy levels. Spautin-1 treatment reduced autophagy and ROS accumulation and attenuated NLRP3 inflammasome-dependent pyroptosis. However, these beneficial effects were greatly blocked by USP13 overexpression, which significantly counteracted the inhibition of autophagy and NLRP3 inflammasome-dependent ferroptosis by Spautin-1. Together, these results suggest that Spautin-1 may ameliorate cerebral ischaemia-reperfusion injury via the autophagy/pyroptosis pathway. Thus, inhibition of autophagy may be considered as a promising therapeutic approach for cerebral ischaemia-reperfusion injury.  相似文献   

11.
12.
The study of epithelial morphogenesis is fundamental to increasing our understanding of organ function and disease. Great progress has been made through study of culture systems such as Madin-Darby canine kidney (MDCK) cells, but many aspects of even simple morphogenesis remain unclear. For example, are specific cell actions tightly coupled to the characteristics of the cell''s environment or are they more often cell state dependent? How does the single lumen, single cell layer cyst consistently emerge from a variety of cell actions? To improve insight, we instantiated in silico analogues that used hypothesized cell behavior mechanisms to mimic MDCK cystogenesis. We tested them through in vitro experimentation and quantitative validation. We observed novel growth patterns, including a cell behavior shift that began around day five of growth. We created agent-oriented analogues that used the cellular Potts model along with an Iterative Refinement protocol. Following several refinements, we achieved a degree of validation for two separate mechanisms. Both survived falsification and achieved prespecified measures of similarity to cell culture properties. In silico components and mechanisms mapped to in vitro counterparts. In silico, the axis of cell division significantly affects lumen number without changing cell number or cyst size. Reducing the amount of in silico luminal cell death had limited effect on cystogenesis. Simulations provide an observable theory for cystogenesis based on hypothesized, cell-level operating principles.  相似文献   

13.
Pituitary adenylate cyclase activating polypeptide (PACAP) exerts neuroprotective effects in various in vitro and in vivo models of cerebral pathologies. It has been shown that PACAP protects neurons in rat models of both global and focal ischemia. In the present study, we investigated factors that may play a role in the neuroprotective effects of PACAP. PACAP strongly reduced the anisomycin-induced apoptosis of PC12 cells, which was abolished in a PKA-deficient PC12 cell line (A126). This effect was also observed in vivo, in permanent occlusion of the middle cerebral artery, where the number of TUNEL-positive neurons was significantly reduced in the ischemic core of PACAP-treated animals. Our results show that PACAP has a minor antioxidant effect in a non-cellular in vitro system, and has considerable antioxidant effects in an in vitro red blood cell filtration model. PACAP had no effect on platelet aggregation induced by collagen, ADP or epinephrine. Our results demonstrate that the effects of PACAP on delayed neuronal death may play a significant role in the reduction of the infarct size in vivo, but the antioxidant effect could only be observed at concentrations higher than that used in the model of focal ischemia.  相似文献   

14.
Apoptotic cell death has been proposed to play a role in the neuronal loss observed following traumatic injury in the CNS and PNS. The present study uses an in vitro tissue culture model to investigate whether free fatty acids (FFAs), at concentrations comparable to those found following traumatic brain injury, trigger cell death. Nerve growth factor (NGF)-differentiated PC12 cells exposed to oleic and arachidonic acids (2 : 1 ratio FFA/BSA) showed normal cell survival. However, when cells were exposed to stearic and palmitic acids, there was a dramatic loss of cell viability after 24 h of treatment. The cell death induced by stearic acid and palmitic acid was apoptotic as assessed by morphological analysis, and activation of caspase-8 and caspase-3-like activities. Western blotting showed that differentiated PC12 cells exposed to stearic and palmitic acids exhibited the signature apoptotic cleavage fragment of poly (ADP-ribose) polymerase (PARP). Interestingly, blockade of caspase activities with the pan-caspase inhibitor z-VAD-fmk failed to prevent the cell death observed induced by palmitic or stearic acid. RT-PCR and RNA blot experiments showed an up-regulation of the Fas receptor and ligand mRNA. These findings are consistent with our hypothesis that FFAs may play a role in the cell death associated with trauma in the CNS and PNS.  相似文献   

15.
16.
This report describes a mathematical model of cell proliferation for simulation of bivariate DNA/bromodeoxyuridine (BrdUrd) distributions. The model formulates the change with time in the frequency of cells with any DNA content and in the amount of incorporated BrdUrd, according to given cytokinetic parameters, i.e., durations and dispersions of cell cycle phases and DNA synthesis rate during S-phase. We have applied this model to sequential DNA/BrdUrd distributions measured for Chinese hamster ovary cells asynchronously grown in vitro, 1) for 30 min in 10 microM BrdUrd followed by growth in BrdUrd-free medium for 0 to 24 h, or 2) during continuous incubation in 3 microM BrdUrd plus 30 microM thymidine for 2 to 24 h. The matches between the experimental and simulated distributions give the G1, S, G2M, and total cell cycle durations (and coefficients of variation) of 5.6 h (0.08), 7.0 h (0.07), 1.4 h (0.16), and 14.0 h (0.05), respectively. The model is shown to be useful for quantitative interpretation of the bivariate distributions.  相似文献   

17.
In this study, a new class of phenolic tetrahydro-beta-carboline RGD peptidomimetic conjugates was designed and synthesized. The radical scavenging activities of these newly synthesized compounds 12a-c were evaluated in PC12 cell survival assays. The NO scavenging activities of these compounds were confirmed in the acetylcholine-induced vasorelaxation assay. Compounds 12a-c were efficacious in a rat arterial thrombosis model, and were active in ADP- or PAF-induced in vitro platelet aggregation assays, which suggests these compounds also possess anti-thrombotic activity. The beneficial effects of dual-acting agent 12c were demonstrated on the ischemia-reperfusion induced cardiac infarct size and oxidative change in an in vivo rat model.  相似文献   

18.
Wu D  Lin F 《PloS one》2011,6(4):e18805
Directed cell migration mediates physiological and pathological processes. In particular, immune cell trafficking in tissues is crucial for inducing immune responses and is coordinated by multiple environmental cues such as chemoattractant gradients. Although the chemotaxis mechanism has been extensively studied, how cells integrate multiple chemotactic signals for effective trafficking and positioning in tissues is not clearly defined. Results from previous neutrophil chemotaxis experiments and modeling studies suggested that ligand-induced homologous receptor desensitization may provide an important mechanism for cell migration in competing chemoattractant gradients. However, the previous mathematical model is oversimplified to cell gradient sensing in one-dimensional (1-D) environment. To better understand the receptor desensitization mechanism for chemotactic navigation, we further developed the model to test the role of homologous receptor desensitization in regulating both cell gradient sensing and migration in different configurations of chemoattractant fields in two-dimension (2-D). Our results show that cells expressing normal desensitizable receptors preferentially orient and migrate toward the distant gradient in the presence of a second local competing gradient, which are consistent with the experimentally observed preferential migration of cells toward the distant attractant source and confirm the requirement of receptor desensitization for such migratory behaviors. Furthermore, our results are in qualitative agreement with the experimentally observed cell migration patterns in different configurations of competing chemoattractant fields.  相似文献   

19.
Dystrophin Dp71 is the main product of the Duchenne muscular dystrophy gene in the brain; however, its function is unknown. To study the role of Dp71 in neuronal cells, we previously generated by antisense treatment PC12 neuronal cell clones with decreased Dp71 expression (antisense-Dp71 cells). PC12 cells express two different splicing isoforms of Dp71, a cytoplasmic variant called Dp71f and a nuclear isoform called Dp71d. We previously reported that antisense-Dp71 cells display deficient adhesion to substrate and reduced immunostaining of beta1-integrin in the cell area contacting the substrate. In this study, we isolated additional antisense-Dp71 clones to analyze in detail the potential involvement of Dp71f isoform with the beta1-integrin adhesion system of PC12 cells. Immunofluorescence analyses as well as immunoprecipitation assays demonstrated that the PC12 cell beta1-integrin adhesion complex is composed of beta1-integrin, talin, paxillin, alpha-actinin, FAK and actin. In addition, our results showed that Dp71f associates with most of the beta1-integrin complex components (beta1-integrin, FAK, alpha-actinin, talin and actin). In the antisense-Dp71 cells, the deficiency of Dp71 provokes a significant reduction of the beta1-integrin adhesion complex and, consequently, the deficient adhesion of these cells to laminin. In vitro binding experiments confirmed the interaction of Dp71f with FAK and beta1-integrin. Our data indicate that Dp71f is a structural component of the beta1-integrin adhesion complex of PC12 cells that modulates PC12 cell adhesion by conferring proper complex assembly and/or maintenance.  相似文献   

20.
Heatstroke is a devastating condition that is characterized by severe hyperthermia and central nervous system dysfunction. However, the mechanism of thermoregulatory center dysfunction of the hypothalamus in heatstroke is unclear. In this study, we established a heatstroke mouse model and a heat-stressed neuronal cellular model on the pheochromocytoma-12 (PC12) cell line. These models revealed that HS promoted obvious neuronal injury in the hypothalamus, with high pathological scores. In addition, PC12 cell apoptosis was evident by decreased cell viability, increased caspase-3 activity, and high apoptosis rates. Furthermore, 14 differentially expressed proteins in the hypothalamus were analyzed by fluorescence two-dimensional difference gel electrophoresis and identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Expression changes in hippocalcin (HPAC), a downregulated neuron-specific calcium-binding protein, were confirmed in the hypothalamus of the heatstroke mice and heat-stressed PC12 cells by immunochemistry and western blot. Moreover, HPAC overexpression and HPAC-targeted small interfering RNA experiments revealed that HPAC functioned as an antiapoptotic protein in heat-stressed PC12 cells and hypothalamic injury. Lastly, ulinastatin (UTI), a cell-protective drug that is clinically used to treat patients with heatstroke, was used in vitro and in vivo to confirm the role of HPAC; UTI inhibited heat stress (HS)-induced downregulation of HPAC expression, protected hypothalamic neurons and PC12 cells from HS-induced apoptosis and increased heat tolerance in the heatstroke animals. In summary, our study has uncovered and demonstrated the protective role of HPAC in heatstroke-induced hypothalamic injury in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号