首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The present study was undertaken to ascertain whether the casein derived bitter tastant Cyclo (Leu-Trp) [CLT] has an affinity or not for the particular receptors of the pineal hormone, melatonin, on the melanophores of a major carp Labeo rohita (Ham.). The bitter tastant CLT, in the dose range of 3.34?×?10?16 M to 3.34?×?10?4 M, has induced an aggregatory effect but not in a dose dependent manner. Binding of CLT with the receptors may vary at different concentrations. Denervation of the melanophores has shown a complete inhibition of the CLT mediated aggregation. Prazosin has partially inhibited the aggregatory effect of CLT. Moreover, the bitter tastant’s response is mediated through the α2 adrenoceptors only at particular dose ranges. The MT1 and MT2 melatonin receptor antagonist luzindole and the MT2 specific antagonist K185 have perfectly blocked the aggregatory effects of CLT. We have found that the CLT mediated aggregatory effect is dependent upon the release of neurotransmitters and the two subtypes of melatonin (MT) receptors (MT1 and MT2) possess a perfect affinity towards the bitter tastant CLT. Our study demands a need to further make a clinical research on the effects of bitter tastants on the physiology of the biological rhythm maintaining hormone melatonin.  相似文献   

2.
The sweeteners saccharin, D-tryptophan, and neohesperidin dihydrochalcone (NHD) and the bitter tastant cyclo(Leu-Trp) stimulated concentration-dependent pigment aggregation in a Xenopus laevis melanophore cell line similar to melatonin. Like melatonin, these tastants inhibited (by 45-92%) cAMP formation in melanophores; pertussis toxin pretreatment almost completely abolished the tastant-induced cAMP inhibition, suggesting the involvement of the inhibitory pathway (Gi) of adenylyl cyclase. The presence of luzindole (melatonin receptor antagonist) almost completely abolished the inhibition of cAMP formation induced by saccharin, D-tryptophan, and cyclo(Leu-Trp) but only slightly affected the inhibitory effect of NHD. In contrast, the presence of an alpha2-adrenergic receptor antagonist, yohimbine, almost completely abolished the inhibition of cAMP formation induced by NHD but had only a minor effect on that induced by the other tastants. Thus saccharin, D-tryptophan, and cyclo(Leu-Trp) are melatonin receptor agonists whereas NHD is an alpha2-adrenergic receptor agonist, but both pathways lead to the same transduction output and cellular response. Formation of D-myo-inositol 1,4,5-trisphosphate (IP3) in melanophores was reduced (15-58%, no concentration dependence) by saccharin, D-tryptophan, and cyclo(Leu-Trp) stimulation but increased by NHD stimulation. Tastant stimulation did not affect cGMP. Although some of the above tastants were found to be membrane permeant, their direct activation of downstream transduction components in this experimental system is questionable. MT1 and MT2 melatonin receptor mRNAs were identified in rat circumvallate papilla taste buds and nonsensory epithelium, suggesting the occurrence of MT1 and MT2 receptors in these tissues. Melatonin stimulation reduced the cellular content of cAMP in taste cells, which may or may not be related to taste sensation.  相似文献   

3.
4.
The hormone melatonin regulates the biological clock and assist in various other physiologies of vertebrates. Present work is intended to check the affinity of saccharin towards the melatonin receptors and the possible role of saccharin interference in the melatonin physiology. The present in vitro study is based on the working model of isolated scale melanophores in the dorso-lateral region of Labeo rohita. The pigment cells were incubated in the agonist and the antagonists within a limited time frame and subsequently their Melanophore Size Index (MSI) were calculated. The inferences were drafted through the observed signal transduction upshots in pigment translocations within the melanophores. Saccharin, in a wide dose range, has consistently induced a concentration-related aggregation similar to the aggregatory effect as shown by melatonin on the melanophores. Binding of saccharin with the receptors and eliciting its aggregatory effect is partially dependent on the release of neurotransmitters. The aggregatory effects were found to be significantly blocked by luzindole, K185, and prazosin, which are the potent melatonin receptor blockers, at the higher concentrations of saccharin. Hence, all the three subtypes of melatonin receptors viz. MT?, MT?, and MT? are participating in saccharin-mediated aggregations. Blocking by neomycin shows that Ca2? ions are very crucial in dispensing the aggregatory effect of the sweetener. This research demands that an intensive and careful thorough study should be made about saccharin, specifically its effects upon melatonin physiology, before its unwarranted use as the food ingredients for human use.  相似文献   

5.
The hormone melatonin regulates the biological clock and assist in various other physiologies of vertebrates. Present work is intended to check the affinity of saccharin towards the melatonin receptors and the possible role of saccharin interference in the melatonin physiology. The present in vitro study is based on the working model of isolated scale melanophores in the dorso-lateral region of Labeo rohita. The pigment cells were incubated in the agonist and the antagonists within a limited time frame and subsequently their Melanophore Size Index (MSI) were calculated. The inferences were drafted through the observed signal transduction upshots in pigment translocations within the melanophores. Saccharin, in a wide dose range, has consistently induced a concentration-related aggregation similar to the aggregatory effect as shown by melatonin on the melanophores. Binding of saccharin with the receptors and eliciting its aggregatory effect is partially dependent on the release of neurotransmitters. The aggregatory effects were found to be significantly blocked by luzindole, K185, and prazosin, which are the potent melatonin receptor blockers, at the higher concentrations of saccharin. Hence, all the three subtypes of melatonin receptors viz. MT1, MT2, and MT3 are participating in saccharin-mediated aggregations. Blocking by neomycin shows that Ca2+ ions are very crucial in dispensing the aggregatory effect of the sweetener. This research demands that an intensive and careful thorough study should be made about saccharin, specifically its effects upon melatonin physiology, before its unwarranted use as the food ingredients for human use.  相似文献   

6.
1. Comparing the daytime and the night-time pigmentary patterns of the skin of the pencil fish, Nannostomus beckfordi, we noticed that specific regions of dark spots that were part of the night-time pattern became pale during the day.2. Microscopic observations revealed that melanosomes in the melanophores in those regions were aggregated during the day but became dispersed at night.3. These melanophores responded to melatonin by dispersal of melanosomes while the cells on other parts of the body responded to melatonin by aggregation of the pigment in the normal way.4. The melanophores that responded to melatonin by pigment dispersion responded normally to other hormones and neurotransmitters, as did those on other parts of the skin.5. The results indicate that, in addition to the known melatonin receptor that mediates the aggregation of melanosomes, there also exists an unusual receptor which mediates the dispersion of pigment in melanophores. We have tentatively designated this receptor the ‘beta-melatonin receptor’.  相似文献   

7.
Novel chemical entities (NCEs) may be investigated for emetic liability in a range of unpleasant experiments involving retching, vomiting or conditioned taste aversion/food avoidance in sentient animals. We have used a range of compounds with known emetic /aversive properties to examine the possibility of using the social amoeba, Dictyostelium discoideum, for research into identifying and understanding emetic liability, and hence reduce adverse animal experimentation in this area. Twenty eight emetic or taste aversive compounds were employed to investigate the acute (10 min) effect of compounds on Dictyostelium cell behaviour (shape, speed and direction of movement) in a shallow chemotaxic gradient (Dunn chamber). Compound concentrations were chosen based on those previously reported to be emetic or aversive in in vivo studies and results were recorded and quantified by automated image analysis. Dictyostelium cell motility was rapidly and strongly inhibited by four structurally distinct tastants (three bitter tasting compounds--denatonium benzoate, quinine hydrochloride, phenylthiourea, and the pungent constituent of chilli peppers--capsaicin). In addition, stomach irritants (copper chloride and copper sulphate), and a phosphodiesterase IV inhibitor also rapidly blocked movement. A concentration-dependant relationship was established for five of these compounds, showing potency of inhibition as capsaicin (IC(50) = 11.9 ± 4.0 μM) > quinine hydrochloride (IC(50) = 44.3 ± 6.8 μM) > denatonium benzoate (IC(50) = 129 ± 4 μM) > phenylthiourea (IC(50) = 366 ± 5 μM) > copper sulphate (IC(50) = 1433 ± 3 μM). In contrast, 21 compounds within the cytotoxic and receptor agonist/antagonist classes did not affect cell behaviour. Further analysis of bitter and pungent compounds showed that the effect on cell behaviour was reversible and not cytotoxic, suggesting an uncharacterised molecular mechanism of action for these compounds. These results therefore demonstrate that Dictyostelium has potential as a non-sentient model in the analysis of the molecular effects of tastants, although it has limited utility in identification of emetic agents in general.  相似文献   

8.
Inflammation and oxidative stress are closely linked patho-physiological processes which occur concurrently in many diseased conditions. Recently, interdependence between these two processes explains the antioxidant paradox associated with failure to select appropriate agents required for prevention of diseases known to be induced by oxidative stress. Present study established the overlapping anti-inflammatory and anti-oxidative potential along with bio-accessibility of milk casein derived tripeptide (LLY). Tripeptide exhibited anti-inflammatory response under ex vivo conditions by suppressing (P<.01) mice splenocytes proliferation and modulating their cytokines (IFN-γ, IL-10 and TGF-β) with improved phagocytosis of peritoneal macrophages. Conversely, tripeptide displayed extraordinary radical scavenging ability and cellular anti-oxidative potential using chemical assays and H2O2 induced oxidative stress model on Caco-2 cells. Under cellular assessment, on one hand tripeptide inhibited (P<.01) intracellular ROS generation and reduced MDA and protein carbonyls but on the other also increased (P<.01) the activity of anti-oxidative enzyme, catalase without much effect on SOD and GPx. This anti-oxidative potential was further established by studying relative expression of genes (Nrf-2 and Keap1) and Nrf-2 nuclear translocation associated with anti-oxidative signaling in Caco-2 cells. Bio-accessibility of tripeptide and its intact transport across Caco-2 cell monolayer was also found to be 1.72±0.22% through PepT1 mediated transport mechanism. Besides, tripeptide displayed strong anti-oxidative and anti-inflammatory potential under in vivo conditions in mice against ethanol induced oxidative stress by elevating (P<.01) liver GSH content and by decreasing (P<.01) the activities of anti-oxidative enzymes, MDA along with reduced expression of CYP2E1, PPAR-α, TNF-α and COX-2 genes than ethanol control.  相似文献   

9.
10.
We examined co-localization of vanilloid receptor (VR1) with sweet receptors T1R2, T1R3, or bitter receptor T2R6 in taste receptor cells of rat circumvallate papillae. Tissue sections of rat circumvallate papillae were doubly reacted with anti-VR1 antibodies and anti-T1R2, anti-T1R3 or anti-T2R6 antibodies, using double-immunofluorescence histochemistry technique. Localizations of VR1, T1Rs and T2R6 in the vallate taste cells containing α-gustducin were also examined. VR1 immunoreactivities (-ir) were observed in subsets of taste cells in the circumvallate papillae, and 96–99% of the vallate taste cells exhibiting T1R2-, T1R3- or T2R6-ir co-exhibited VR1-ir. Approximately half of T2R6-ir cells (~49%), and 50–58% of T1Rs-ir cells, co-exhibited α-gustducin-ir in the vallate taste buds. About 58% of VR1-ir cells in the vallate exhibited α-gustducin-ir as well. Results support the idea that capsaicin may interact with the transduction pathways of sweet and bitter taste stimuli, possibly in mediation of its receptor VR1 localized in taste receptor cells. Additionally, the partial co-localization of α-gustducin with VR1 suggests that a tentative modulatory function of capsaicin in sweet and bitter transductions in the rat circumvallate comprises of both α-gustducin-mediated and non-mediated transduction pathways.  相似文献   

11.
Human bitter taste receptors of the TAS2R gene family play a crucial role as warning sensors against the ingestion of toxic food compounds. Moreover, the genetically highly polymorphic hTAS2Rs recognize an enormous number of structurally diverse toxic and non-toxic bitter substances, and hence, may substantially influence our individual eating habits. Heterologous expression in mammalian cells is a useful tool to investigate interactions between these receptors and their agonists. However, many bitter taste receptors are poorly expressed at the cell surface of heterologous cells requiring the addition of plasma membrane export promoting epitopes to the native receptor proteins. Currently, nothing is known about amino acid motifs or other receptor-intrinsic features of TAS2Rs affecting plasma membrane association. In the present study, we analyzed the Asn-linked glycosylation of hTAS2Rs at a consensus sequence in the second extracellular loop, which is conserved among all 25 hTAS2Rs. Non-glycosylated receptors exhibit substantially lower cell surface localization and reduced association with the cellular chaperone calnexin. As the auxiliary factors receptor transporting proteins 3 and 4 are able to restore the function of non-glycosylated hTAS2R16 partially, we conclude that glycosylation is important for receptor maturation but not for its function per se .  相似文献   

12.
Purpose: The present work was carried out to reveal the involvement of histamine receptors at the neuro-melanophore junction of teleost, Oreochromis mossambicus.

Methods: The isolated scale melanophores were assayed using the mean melanophore size index and their responses were recorded in presence of various concentrations of histamine along with H1 and H2 receptor specific agonists and antagonist and potentiator compound 48/80.

Results: Melanophores showed high sensitivity to histamine and its specific agonists. Histamine caused a dose-dependent pigment aggregation, whereas 2-(2-Pyridyl) ethylamine (PEA), a specific H1R agonist also caused aggregation in a similar manner. Conversely, amthamine, a specific H2R agonist resulted in pigment dispersion. The effects were antagonized by mepyramine; specific H1R antagonist and ranitidine a specific H2R antagonist.

Conclusion: It is concluded that O. mossambicus melanophores have both H1 and H2 receptors which mediate melanophore aggregation and dispersion respectively. Compound 48/80 augmented the melanin-aggregating and dispersing effects of PEA and amthamine. It is suggested that the effect of histamine is directly mediated through H1 and H2 receptors, whereas H1Rs may be predominantly involved in the aggregatory responses.  相似文献   

13.
Phenylthiocarbamide tastes intensely bitter to some individuals, but others find it completely tasteless. Recently, it was suggested that phenylthiocarbamide elicits bitter taste by interacting with a human G protein-coupled receptor (hTAS2R38) encoded by the PTC gene. The phenylthiocarbamide nontaster trait was linked to three single nucleotide polymorphisms occurring in the PTC gene. Using the crystal structure of bovine rhodopsin as template, we generated the 3D structure of hTAS2R38 bitter taste receptor. We were able to map on the receptor structure the amino acids affected by the genetic polymorphisms and to propose molecular functions for two of them that explained the emergence of the nontaster trait. We used molecular docking simulations to find that phenylthiocarbamide exhibited a higher affinity for the target receptor than the structurally similar molecule 6-n-propylthiouracil, in line with recent experimental studies. A 3D model was constructed for the hTAS2R16 bitter taste receptor as well, by applying the same protocol. We found that the recently published experimental ligand binding affinity data for this receptor correlated well with the binding scores obtained from our molecular docking calculations.  相似文献   

14.
Evolution of bitter taste receptors in humans and apes   总被引:5,自引:2,他引:5  
Bitter taste perception is crucial for the survival of organismsbecause it enables them to avoid the ingestion of potentiallyharmful substances. Bitter taste receptors are encoded by agene family that in humans has been shown to contain 25 putativelyfunctional genes and 8 pseudogenes and in mouse 33 putativelyfunctional genes and 3 pseudogenes. Lineage-specific expansionsof bitter taste receptors have taken place in both mouse andhuman, but very little is known about the evolution of thesereceptors in primates. We report the analysis of the almostcomplete repertoires of bitter taste receptor genes in human,great apes, and two Old World monkeys. As a group, these genesseem to be under little selective constraint compared with olfactoryreceptors and other genes in the studied species. However, incontrast to the olfactory receptor gene repertoire, where humanshave a higher proportion of pseudogenes than apes, there isno evidence that the rate of loss of bitter taste receptor genesvaries among humans and apes.  相似文献   

15.
Gastrodia elata is a famous traditional Chinese herb with medicinal and edible application. In this study, nine polybenzyls (1?9), including six new ones (2?5, 7 and 9), were isolated from the EtOAc extract of G. elata. Five compounds 1, 3, 4, 6 and 8 were found to activate melatonin receptors. Especially, compound 1 showed agonistic effects on MT1 and MT2 receptors with EC50 values of 237 and 244 μM. For better understanding their structure-activity relationships (SARs), ten polybenzyl analogs were further synthesized and assayed for their activities on melatonin receptors. Preliminary SARs study suggested that two para-hydroxy groups were the key pharmacophore for maintaining activity. Molecular docking simulations verified that compound 1 could strongly interact with MT2 receptor by bonding to Phe 118, Gly 121, His 208, Try 294 and Ala 297 residues.  相似文献   

16.
17.
18.
The melanosome dispersing activity of prostaglandins PGE1, PGE2, PGF1 alpha, PGF2 alpha, PGI2 and 6 beta PGI, was tested on the melanophores of Anolis carolinensis. Only PGE2 and PGE1 were active and while PGE2 was the most potent and acted synergistically with alpha-MSH, PGE1 was additive with alpha-MSH. Arachidonic acid also stimulated melanosome dispersion but its effect was blocked by indomethacin suggesting an action through its conversion to PGE1 or PGE2. The effect of alpha-MSH, on the other hand, was unaltered by indomethacin which suggests that alpha-MSH stimulated melanosome dispersion does not depend upon prostaglandin synthesis. Thus, while some prostaglandins may interact with alpha-MSH to stimulate melanosome dispersion they are unlikely to mediate its action.  相似文献   

19.
Bitter taste avoidance behavior (BAB) plays a fundamental role in the avoidance of toxic substances with a bitter taste. However, the molecular basis underlying the development of BAB is unknown. To study critical developmental events by which taste buds turn into functional organs with BAB, we investigated the early phase development of BAB in postnatal mice in response to bitter-tasting compounds, such as quinine and thiamine. Postnatal mice started to exhibit BAB for thiamine and quinine at postnatal day 5 (PD5) and PD7, respectively. Histological analyses of taste buds revealed the formation of microvilli in the taste pores starting at PD5 and the localization of type 2 taste receptor 119 (TAS2R119) at the microvilli at PD6. Treatment of the tongue epithelium with cytochalasin D (CytD), which disturbs ACTIN polymerization in the microvilli, resulted in the loss of TAS2R119 localization at the microvilli and the loss of BAB for quinine and thiamine. The release of ATP from the circumvallate papillae tissue due to taste stimuli was also declined following CytD treatment. These results suggest that the localization of TAS2R119 at the microvilli of taste pores is critical for the initiation of BAB.  相似文献   

20.
Bitter taste has evolved as a central warning signal against the ingestion of potentially toxic substances appearing in the environment. The molecular events in the perception of bitter taste start with the binding of specific water-soluble molecules to G protein-coupled receptors (GPCR) called T2Rs and expressed at the surface of taste receptor cells. The functional characterisation of T2R receptors is far from been completed due to the difficulty to functionally express them in heterologous systems. Taking advantage of the parallelisms between the Caenorhabditis elegans (C. elegans) and mammalian GPCR signalling pathways, we developed a C. elegans-based expression system to express functional human and rodent GPCRs of the T2R family. We generated transgenic worms expressing T2Rs in ASI chemosensory neurons and performed behavioural assays using a variety of bitter tastants. As a proof of the concept, we generated transgenic worms expressing human T2R4 or its mouse ortholog T2R8 receptors, which respond to two bitter tastants previously characterised as their functional ligands, 6-n-propyl-2-thiouracil and denatoniun. As expected, expression of human T2R4 or its mouse ortholog T2R8 in ASI neurons counteracted the water-soluble avoidance to 6-n-propyl-2-thiouracil and denatoniun observed in control wild-type worms. The expression in ASI neurons of human T2R16, the ligand of which, phenyl-beta-d-glucopyranoside, belong to a chemically different group of bitter tastants, also counteracted the water-soluble avoidance to this compound observed in wild-type worms. These results indicate that C. elegans is a suitable heterologous expression system to express functional T2Rs providing a tool to efficiently search for specific taste receptor ligands and to extend our understanding of the molecular basis of gustation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号