首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the present study, we used the hph-1 mouse, which displays GTP-cyclohydrolase I (GTPCH I) deficiency, to test the hypothesis that loss of tetrahydrobiopterin (BH(4)) in conduit and small arteries activates compensatory mechanisms designed to protect vascular wall from oxidative stress induced by uncoupling of endothelial nitric oxide synthase (eNOS). Both GTPCH I activity and BH(4) levels were reduced in the aortas and small mesenteric arteries of hph-1 mice. However, the BH(4)-to-7,8-dihydrobiopterin ratio was significantly reduced only in hph-1 aortas. Furthermore, superoxide anion and 3-nitrotyrosine production were significantly enhanced in aortas but not in small mesenteric arteries of hph-1 mice. In contrast to the aorta, protein expression of copper- and zinc-containing superoxide dismutase (CuZnSOD) was significantly increased in small mesenteric arteries of hph-1 mice. Protein expression of catalase was increased in both aortas and small mesenteric arteries of hph-1 mice. Further analysis of endothelial nitric oxide synthase (eNOS)/cyclic guanosine monophosphate (cGMP) signaling demonstrated that protein expression of phosphorylated Ser(1177)-eNOS as well as basal cGMP levels and hydrogen peroxide was increased in hph-1 aortas. Increased production of hydrogen peroxide in hph-1 mice aortas appears to be the most likely mechanism responsible for phosphorylation of eNOS and elevation of cGMP. In contrast, upregulation of CuZnSOD and catalase in resistance arteries is sufficient to protect vascular tissue from increased production of reactive oxygen species generated by uncoupling of eNOS. The results of our study suggest that anatomical origin determines the ability of vessel wall to cope with oxidative stress induced by uncoupling of eNOS.  相似文献   

2.
Decreased levels of tetrahydrobiopterin (BH4), an absolute cofactor for nitric oxide synthase (NOS), lead to uncoupling of NOS into a superoxide v. nitric oxide producing enzyme, and it is this uncoupling that links it to the development of vascular disease. However, the effects of in vivo deficiency of BH4 on neointimal formation after vascular injury have not been previously investigated. Hph-1 mice, which display 90% deficiency in guanine triphosphate cyclohydrolase I, the rate limiting enzyme in BH4 synthesis, were used. Hph-1 and wild-type mice, treated with either vehicle or BH4 (n = 15 per group), were subjected to wire-induced femoral artery injury, and NOS expression and activity, inflammation, cell proliferation, superoxide production, and neointimal formation were assessed. The major form of NOS expressed over vessel wall after vascular injury was endothelial NOS. Hph-1 mice exhibited lower NOS activity (2.8 +/- 0.3 vs. 4.5 +/- 0.4 pmol/min/mg protein, P < 0.01), and higher aortic superoxide content (5.2 +/- 2.0 x 10(5) cpm vs. 1.6 +/- 0.7 x 10(5) cpm, P < 0.01) compared with wild-type controls, indicating uncoupling of NOS. Treatment of hph-1 mice with BH4 significantly increased NOS activity (from 2.8 +/- 0.3 to 4.1 +/- 0.4 pmol.min(-1).mg protein(-1), P < 0.05), and attenuated superoxide production (from 5.2 +/- 2.0 x 10(5) cpm to 0.8 +/- 0.7 x 10(5) cpm, P < 0.05). Hph-1 mice also had higher inflammatory reactions and more cell proliferation after vascular injury. Furthermore, hph-1 mice responded by a marked increase in neointimal formation at 4 wk after vascular injury, compared with wild-type controls (intima:media ratio: 4.5 +/- 0.5 vs. wild-type 0.7 +/- 0.1, P < 0.001). Treatment of hph-1 mice with BH4 prevented vascular injury-induced increase in neointimal formation (intima:media ratio: 1.4 +/- 0.1 vs. hph-1, P < 0.001). Treatment had no effect on wild-type controls. In summary, we describe, for the first time, that in vivo BH4 deficiency facilitates neointimal formation after vascular injury. Modulation of BH4 bioavailability is an important therapeutic target for restenosis.  相似文献   

3.
J. Neurochem. (2012) 122, 1211-1218. ABSTRACT: In this study, we used the GTP cyclohydrolase I-deficient mice, i.e., hyperphenylalaninemic (hph-1) mice, to test the hypothesis that the loss of tetrahydrobiopterin (BH(4) ) in cerebral microvessels causes endothelial nitric oxide synthase (eNOS) uncoupling, resulting in increased superoxide anion production and inhibition of endothelial nitric oxide signaling. Both homozygous mutant (hph-1(-/-) ) and heterozygous mutant (hph-1(+/-) mice) demonstrated reduction in GTP cyclohydrolase I activity and reduced bioavailability of BH(4) . In the cerebral microvessels of hph-1(+/-) and hph-1(-/-) mice, increased superoxide anion production was inhibited by supplementation of BH(4) or NOS inhibitor- L- N(G) -nitro arginine-methyl ester, indicative of eNOS uncoupling. Expression of 3-nitrotyrosine was significantly increased, whereas NO production and cGMP levels were significantly reduced. Expressions of antioxidant enzymes namely copper and zinc superoxide dismutase, manganese superoxide dismutase, and catalase were not affected by uncoupling of eNOS. Reduced levels of BH(4) , increased superoxide anion production, as well as inhibition of NO signaling were not different between the microvessels of male and female mice. The results of our study are the first to demonstrate that, regardless of gender, reduced BH(4) bioavailability causes eNOS uncoupling, increases superoxide anion production, inhibits eNOS/cGMP signaling, and imposes significant oxidative stress in the cerebral microvasculature.  相似文献   

4.
Tetrahydrobiopterin (BH4) is a required cofactor for the synthesis of NO by endothelial nitric oxide synthase (eNOS), and endothelial BH4 bioavailability is a critical factor in regulating the balance between NO and superoxide production (eNOS coupling). Biosynthesis of BH4 is determined by the activity of GTP-cyclohydrolase I (GTPCH). However, BH4 levels may also be influenced by oxidation, forming 7,8-dihydrobiopterin (BH2), which promotes eNOS uncoupling. Conversely, dihydrofolate reductase (DHFR) can regenerate BH4 from BH2, but whether DHFR is functionally important in maintaining eNOS coupling remains unclear. To investigate the mechanism by which DHFR might regulate eNOS coupling in vivo, we treated wild-type, BH4-deficient (hph-1), and GTPCH-overexpressing (GCH-Tg) mice with methotrexate (MTX), to inhibit BH4 recycling by DHFR. MTX treatment resulted in a striking elevation in BH2 and a decreased BH4:BH2 ratio in the aortas of wild-type mice. These effects were magnified in hph-1 but diminished in GCH-Tg mice. Attenuated eNOS activity was observed in MTX-treated hph-1 but not wild-type or GCH-Tg mouse lung, suggesting that inhibition of DHFR in BH4-deficient states leads to eNOS uncoupling. Taken together, these data reveal a key role for DHFR in regulating the BH4 vs BH2 ratio and eNOS coupling under conditions of low total biopterin availability in vivo.  相似文献   

5.
Abstract: The hph-1 mouse, which displays tetrahydrobiopterin deficiency and impaired dopamine and serotonin turnover, has been used to study cofactor replacement therapy for disorders causing brain tetrahydrobiopterin deficiency. Subcutaneous administration of 100 µmol/kg (30 mg/kg) of tetrahydrobiopterin resulted in a twofold increase in brain cofactor concentration 1 h after administration. Concentrations remained above the endogenous level for at least 4 h but returned to normal by 24 h. The lipophilic tetrahydrobiopterin analogue 6-methyltetrahydropterin entered the brain five times more efficiently than tetrahydrobiopterin but was cleared at a faster rate. Tetrahydropterins linked to the lipoidal carrier N -benzyl-1,4-dihydronicotinoyl did not result in a detectable increase in levels of brain pterins over the period of the study (1–4 h). Stimulation of monoamine turnover was not observed at any time point with either natural cofactor or the methyl analogue. Increasing the amount of tetrahydrobiopterin to 1,000 µmol/kg resulted in elevation of cofactor concentrations, a brief increase in the activity of tyrosine and tryptophan hydroxylase 1 h postadministration, and increased turnover of dopamine and serotonin metabolites lasting 24 h. However, 2 of 12 (17%) mice died following administration of this dose of cofactor. Our findings suggest that acute peripheral tetrahydrobiopterin administration is unlikely to stimulate brain monoamine turnover directly unless very large and potentially toxic doses of cofactor are used.  相似文献   

6.
Tetrahydrobiopterin (BH4) is a regulator of endothelial nitric oxide synthase (eNOS) activity. Deficient levels result in eNOS uncoupling, with a shift from nitric oxide to superoxide generation. The hph-1 mutant mouse has deficient GTP cyclohydrolase I (GTPCH1) activity, resulting in low BH4 tissue content. The adult hph-1 mouse has pulmonary hypertension, but whether such condition is present from birth is not known. Thus, we evaluated newborn animals’ pulmonary arterial medial thickness, biopterin content (BH4 + BH2), H2O2 and eNOS, right ventricle-to-left ventricle + septum (RV/LV + septum) ratio, near-resistance pulmonary artery agonist-induced force, and endothelium-dependent and -independent relaxation. The lung biopterin content was inversely related to age for both types, but significantly lower in hph-1 mice, compared to wild-type animals. As judged by the RV/LV + septum ratio, newborn hph-1 mice have pulmonary hypertension and, after a 2-week 13% oxygen exposure, the ratios were similar in both types. The pulmonary arterial agonist-induced force was reduced (P < 0.01) in hph-1 animals and no type-dependent difference in endothelium-dependent or -independent vasorelaxation was observed. Compared to wild-type mice, the lung H2O2 content was increased, whereas the eNOS expression was decreased (P < 0.01) in hph-1 animals. The pulmonary arterial medial thickness, a surrogate marker of vascular remodeling, was increased (P < 0.01) in hph-1 compared to wild-type mice. In conclusion, our data suggest that pulmonary hypertension is present from birth in the GTPCH1-deficient mice, not as a result of impaired vasodilation, but secondary to vascular remodeling.  相似文献   

7.
Tetrahydrobiopterin (BH4) levels and GTP cyclohydrolase activity (GTP-CH) were measured in tissues from mutants and controls of 24 different mouse strains to identify mutants that might be suitable models for diseases which are characterized by a deficiency of the biopterin cofactor, such as parkinsonism and atypical phenylketonuria. BH4 levels and GTP-CH activity were determined in brain, liver, and spleen obtained from 24 mutants with neurological or immunological defects. BH4 levels in brain were slightly but significantly decreased in only two mutants, spastic (spa) and jittery (ji), while GTP-CH activity in brain was not significantly lower than controls in any of the strains examined. GTP-CH levels in liver were significantly decreased in four mutant strains (jittery, ji; leaner, tgla; reeler, rl; and anorexia, anx); however, BH4 levels were significantly lower only in the mutant anorexia (anx). The most significant and widespread changes in both BH4 levels and GTP-CH activity were observed in spleen. In those mutants which were most affected, BH4 levels and GTP-CH activity were decreased 85-90%.  相似文献   

8.
Tetrahydrobiopterin (BH(4)) is an essential cofactor for several enzymes, including all three forms of nitric oxide synthases, the three aromatic hydroxylases, and glyceryl-ether mono-oxygenase. A proper level of BH(4) is, therefore, necessary for the metabolism of phenylalanine and the production of nitric oxide, catecholamines, and serotonin. BH(4) deficiency has been shown to be closely associated with diverse neurological psychiatric disorders. Sepiapterin reductase (SPR) is an enzyme that catalyzes the final step of BH(4) biosynthesis. Whereas the number of cases of neuropsychological disorders resulting from deficiencies of other catalytic enzymes involved in BH(4) biosynthesis and metabolism has been increasing, only a handful of cases of SPR deficiency have been reported, and the role of SPR in BH(4) biosynthesis in vivo has been poorly understood. Here, we report that mice deficient in the Spr gene (Spr(-/-)) display disturbed pterin profiles and greatly diminished levels of dopamine, norepinephrine, and serotonin, indicating that SPR is essential for homeostasis of BH(4) and for the normal functions of BH(4)-dependent enzymes. The Spr(-/-) mice exhibit phenylketonuria, dwarfism, and impaired body movement. Oral supplementation of BH(4) and neurotransmitter precursors completely rescued dwarfism and phenylalanine metabolism. The biochemical and behavioral characteristics of Spr(-/-) mice share striking similarities with the symptoms observed in SPR-deficient patients. This Spr mutant strain of mice will be an invaluable resource to elucidate many important issues regarding SPR and BH(4) deficiencies.  相似文献   

9.
The tetrahydrobiopterin (BH4) cofactor is essential for the biosynthesis of catecholamines and serotonin and for nitric-oxide synthase (NOS). Alterations in BH4 metabolism are observed in various neurological and psychiatric diseases, and mutations in one of the human metabolic genes causes hyperphenylalaninemia and/or monoamine neurotransmitter deficiency. We report on a knockout mouse for the Pts gene, which codes for a BH4-biosynthetic enzyme. Homozygous Pts-/- mice developed with normal morphology but died after birth. Upon daily oral administration of BH4 and neurotransmitter precursors the Pts-/- mice eventually survived. However, at sexual maturity (6 weeks) the mice had only one-third of the normal body weight and were sexually immature. Biochemical analysis revealed no hyperphenylalaninemia, normal brain NOS activity, and almost normal serotonin levels, but brain dopamine was 3% of normal. Low dopamine leads to impaired food consumption as reflected by the severe growth deficiency and a 7-fold reduced serum insulin-like growth factor-1 (IGF-1). This is the first link shown between 6-pyruvoyltetrahydropterin synthase- or BH4-biosynthetic activity and IGF-1.  相似文献   

10.
Quinonoid dihydropteridine reductase (QDPR) catalyzes the regeneration of tetrahydrobiopterin (BH4), a cofactor for monoamine synthesis, phenylalanine hydroxylation and nitric oxide production. Here, we produced and analyzed a transgenic Qdpr−/− mouse model. Unexpectedly, the BH4 contents in the Qdpr−/− mice were not decreased and even increased in some tissues, whereas those of the oxidized form dihydrobiopterin (BH2) were significantly increased. We demonstrated that unlike the wild-type mice, dihydrofolate reductase regenerated BH4 from BH2 in the mutants. Furthermore, we revealed wide alterations in folate-associated metabolism in the Qdpr−/− mice, which suggests an interconnection between folate and biopterin metabolism in the transgenic mouse model.  相似文献   

11.
Tetrahydrobiopterin (BH4) is the natural cofactor of several enzymes widely distributed among eukaryotes, including aromatic amino acid hydroxylases (AAAHs), nitric oxide synthases (NOSs), and alkylglycerol monooxygenase (AGMO). We show here that the nematode Caenorhabditis elegans, which has three AAAH genes and one AGMO gene, contains BH4 and has genes that function in BH4 synthesis and regeneration. Knockout mutants for putative BH4 synthetic enzyme genes lack the predicted enzymatic activities, synthesize no BH4, and have indistinguishable behavioral and neurotransmitter phenotypes, including serotonin and dopamine deficiency. The BH4 regeneration enzymes are not required for steady-state levels of biogenic amines, but become rate limiting in conditions of reduced BH4 synthesis. BH4-deficient mutants also have a fragile cuticle and are generally hypersensitive to exogenous agents, a phenotype that is not due to AAAH deficiency, but rather to dysfunction in the lipid metabolic enzyme AGMO, which is expressed in the epidermis. Loss of AGMO or BH4 synthesis also specifically alters the sensitivity of C. elegans to bacterial pathogens, revealing a cuticular function for AGMO-dependent lipid metabolism in host–pathogen interactions.  相似文献   

12.
Tyrosine hydroxylase (TH) is a rate‐limiting enzyme for dopamine synthesis and requires tetrahydrobiopterin (BH4) as an essential cofactor. BH4 deficiency leads to the loss of TH protein in the brain, although the underlying mechanism is poorly understood. To give insight into the role of BH4 in the developmental regulation of TH protein level, in this study, we investigated the effects of acute and subchronic administrations of BH4 or dopa on the TH protein content in BH4‐deficient mice lacking sepiapterin reductase. We found that BH4 administration persistently elevated the BH4 and dopamine levels in the brain and fully restored the loss of TH protein caused by the BH4 deficiency in infants. On the other hand, dopa administration less persistently increased the dopamine content and only partially but significantly restored the TH protein level in infant BH4‐deficient mice. We also found that the effects of BH4 or dopa administration on the TH protein content were attenuated in young adulthood. Our data demonstrate that BH4 and catecholamines are required for the post‐natal augmentation of TH protein in the brain, and suggest that BH4 availability in early post‐natal period is critical for the developmental regulation of TH protein level.  相似文献   

13.
Subsaturating levels of tetrahydrobiopterin (BH(4)), an essential cofactor for nitric oxide synthase (NOS), can lead to endothelial dysfunction as a result of decreased production of nitric oxide. Furthermore, insufficient BH(4) can also result in NOS-uncoupled production of reactive oxygen intermediates, such as superoxide anion and hydrogen peroxide. Nitric oxide and superoxide react rapidly to form peroxynitrite, which may be the reactive species responsible for many of the toxic effects of nitric oxide. Here we show that BH(4) is a primary target for peroxynitrite-catalyzed oxidation because at pH 7.4, physiologically relevant concentrations of BH(4) are oxidized rapidly by low concentrations of peroxynitrite. Peroxynitrite oxidizes BH(4) to quinonoid 5,6-dihydrobiopterin and a large proportion of the quinonoid isomer readily loses its side chain to form 7,8-dihydropterin which is not a cofactor for nitric oxide synthase. Thus, abnormally low levels of BH(4) can promote a cycle of its own destruction mediated by nitric oxide synthase-dependent formation of peroxynitrite. This mechanism might contribute to vascular endothelial dysfunction induced by oxidative stress.  相似文献   

14.
Tetrahydrobiopterin and Biogenic Amine Metabolism in the hph-1 Mouse   总被引:4,自引:2,他引:4  
Abstract: hph-1 mice, which have defective tetrahydrobiopterin biosynthesis due to decreased GTP cyclohydrolase I activity, have been used to investigate the effects of tetrahydrobiopterin deficiency on aromatic l -amino acid monooxygenases and brain monoamine metabolism. Liver tetrahydrobiopterin levels were decreased, and tetrahydrobiopterin deficiency and reduced levels of dopamine, norepinephrine, serotonin, and their metabolites in the brain occurred both pre- and postnatally. Chronic subcutaneous tetrahydrobiopterin elevated brain levels to values higher than those seen in controls but had no effect on monoamine metabolism. In vivo activities of tyrosine hydroxylase and tryptophan hydroxylase were significantly decreased. There was a 30% decrease in the in vitro activity of striatal tyrosine hydroxylase and 50% decrease in liver phenylalanine hydroxylase. Western blotting demonstrated that the lower monooxygenase activities resulted from a reduced absolute amount of tyrosine hydroxylase and phenylalanine hydroxylase protein. The findings suggest involvement of tetrahydrobiopterin in the control of the steady-state concentration of the aromatic l -amino acid monooxygenases. In addition, demonstration of central monoamine changes in the hph-1 mouse make it a possible model system for the investigation of the neuropathological mechanisms in Dopa-responsive dystonia, which has recently been linked with mutations in the gene for GTP cyclohydrolase I.  相似文献   

15.
16.
(6R)-Tetrahydro-l-biopterin (BH(4)) is the rate-limiting cofactor in the production of catecholamine and indoleamine neurotransmitters and is also essential for the synthesis of nitric oxide by nitric-oxide synthase. We have previously reported that BH(4) administration induces PC12 cell proliferation and that nerve growth factor- or epidermal growth factor-induced PC12 cell proliferation requires the elevation of intracellular BH(4) levels. We show here that BH(4) accelerates apoptosis in undifferentiated PC12 cells deprived of serum and in differentiated neuron-like PC12 cells after nerve growth factor withdrawal. Increased production of catecholamines or nitric oxide cannot account for the enhancement of apoptosis by BH(4). Furthermore, increased calcium influx by exogenous BH(4) administration is not involved in the BH(4) proapoptotic effect. Our data also argue against the possibility that increased oxidative stress, due to BH(4) autoxidation, is responsible for the observed BH(4) effects. Instead, they are consistent with the hypothesis that BH(4) induces apoptosis by increasing cell cycle progression. Elevation of intracellular BH(4) during serum withdrawal increased c-Myc (and especially Myc S) expression earlier than serum withdrawal alone. Furthermore, N-acetylcysteine and the cyclin-dependent kinase inhibitor olomoucine ameliorated the BH(4) proapoptotic effect. These data suggest that BH(4) affects c-Myc expression and cell cycle-dependent events, possibly accounting for its effects on promoting cell cycle progression or apoptosis.  相似文献   

17.
Tetrahydrobiopterin (BH4) is a member of the pterin family that has a core structure of pyrazino-2,3-d-pyrimidine rings. Because BH4 is an essential cofactor for the biosynthesis of nitric oxide (a major vasodilator), there is growing interest in BH4 biochemistry in endothelial cells (the cells that line blood vessels). BH4 is synthesized via de novo and salvage pathways from guanosine 5′-triphosphate (GTP) and 7,8-dihydrobiopterin, respectively, in animal cells. GTP cyclohydrolase-I (GTP-CH) is the first and rate-controlling enzyme in the de novo pathway. Available evidence shows that endothelial GTP-CH expression and BH4 synthesis are stimulated by a wide array of nutritional (phenylalanine and arginine), hormonal (insulin and estrogen), immunological (inflammatory cytokines including interleukin [IL]-1, interferon-γ, and tumor necrosis factor-α), therapeutic (statins and cyclosporin A), and endothelium-derived (basic fibroblast growth factor and H2O2) factors. In contrast, glucocorticoids and anti-inflammatory cytokines (IL-4, IL-10, and transforming growth factor [TGF]-β) inhibit endothelial BH4 synthesis. Because BH4 is oxidized to 7,8-dihydrobiopterin and 7,8-dihydropterin at physiological pH, endothelial BH4 homeostasis is regulated by both BH4 synthesis and its oxidation. Vitamin C, folate, and other antioxidants enhance endothelial BH4 bioavailability through chemical stabilization or scavenging of reactive oxygen species, thereby contributing to the maintenance of physiological homeostasis in the endothelium. New know ledge about the cellular and molecular mechanisms for the regulation of endothelial BH4 synthesis and bioavailability is beneficial for developing effective means to prevent and treat cardiovascular disorders, the leading cause, of death in developed nations.  相似文献   

18.
19.
Experimental evidence has been presented connecting melatonin with the prevention or treatment of gastrointestinal disorders either by the scavenging properties of active oxygen or by receptor-mediated stimulation of gene expression of neutralizing enzymes. Prostaglandins and nitric oxide are important neuroimmunomodulators in digestive physiology and different studies have indicated that the protective properties of melatonin may be explained by prostaglandin and/or nitric oxide mechanisms. The aim of the present study was to examine the effect of intraperitoneal administration of melatonin on in vivo changes in PGE(2), generated in gastric mucosal lesions by ischemia-reperfusion. Cyclic GMP nucleotide was also studied as an index of the principal enzymatic activity involved in the metabolism of nitric oxide, the nitric oxide synthase. The different immunological tests showed that the intraperitoneal administration of melatonin prevents the postischemic decrease in prostaglandins. The concentration of this eicosanoid in the rat mucosa treated with 20 mg.kg(-1) of melatonin was significantly higher (p < 0.05) than that in the control rats. The amount of cyclic GMP in the stomach decreased because of ischemia-reperfusion. In treated animals however, a marked increase occurred in concentrations of GMP, but the difference was not statistically significant. The results suggest that the mechanism of protection afforded by melatonin against lesions induced by gastric ischemia-reperfusion may be due to stimulation of the synthesis of eicosanoid protectors during the ischemic process.  相似文献   

20.
We investigated CSF concentrations of nitrite and nitrate as indicators of nitric oxide (NO) production in patients with tetrahydrobiopterin (BH4) deficiencies. Patients with 6-pyruvoyl-tetrahydropterin synthase, sepiapterin reductase and dihydropteridine reductase deficiencies exhibited decreased CSF nitrite + nitrate levels compared with healthy control subjects. Reduced levels of nitrite + nitrate were not influenced by oral administration of 2.5-5.0 mg/kg tetrahydrobiopterin. Our data indicate impaired NO synthase function in patients with BH4 deficiency and suggest possible involvement in the neuronal cell dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号