首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
2.

Background and aims

Fine-root functioning is a major driver of plant growth and strongly influences the global carbon cycle. While fine-root over-yielding has been shown in the upper soil layers of mixed-species forests relative to monospecific stands, the consequences of tree diversity on fine-root growth in very deep soil layers is still unknown. Our study aimed to assess the consequences of mixing Acacia mangium and Eucalyptus grandis trees on soil exploration by roots down to the water table at 17 m depth in a tropical planted forest.

Method

Fine roots (diameter < 2 mm) were sampled in a randomized block design with three treatments: monospecific stands of Acacia mangium (100A), Eucalyptus grandis (100E), and mixed stands with 50% of each species (50A50E). Root ingrowth bags were installed at 4 depths (from 0.1 m to 6 m) in the three treatments within three different blocks, to study the fine-root production over 2 periods of 3 months.

Results

Down to 17 m depth, total fine-root biomass was 1127 g m?2 in 50A50E, 780 g m?2 in 100A and 714 g m?2 in 100E. Specific root length and specific root area were 110–150% higher in 50A50E than in 100A for Acacia mangium trees and 34% higher in 50A50E than in 100E for Eucalyptus grandis trees. Ingrowth bags showed that the capacity of fine roots to explore soil patches did not decrease down to a depth of 6 m for the two species.

Conclusions

Belowground interactions between Acacia mangium and Eucalyptus grandis trees greatly increased the exploration of very deep soil layers by fine roots, which is likely to enhance the uptake of soil resources. Mixing tree species might therefore increase the resilience of tropical planted forests through a better exploration of deep soils.
  相似文献   

3.
4.
5.

Aims

This work aimed to evaluate the antibacterial and antifungal activities of two types of pyroligneous acid (PA) obtained from slow pyrolysis of wood of Mimosa tenuiflora and of a hybrid of Eucalyptus urophylla × Eucalyptus grandis.

Methods and Results

Wood wedges were carbonized on a heating rate of 1·25°C min?1 until 450°C. Pyrolysis smoke was trapped and condensed to yield liquid products. Crude pyrolysis liquids were bidistilled under 5 mmHg vacuum yielding purified PA. Multi‐antibiotic‐resistant strains of Escherichia coli, Pseudomonas aeruginosa (ATCC 27853) and Staphylococcus aureus (ATCC 25923) had their sensitivity to PA evaluated using agar diffusion test. Two yeasts were evaluated as well, Candida albicans (ATCC 10231) and Cryptococcus neoformans. GC‐MS analysis of both PAs was carried out to obtain their chemical composition. Regression analysis was performed, and models were adjusted, with diameter of inhibition halos and PA concentration (100, 50 and 20%) as parameters. Identity of regression models and equality of parameters in polynomial orthogonal equations were verified. Inhibition halos were observed in the range 15–25 mm of diameter.

Conclusions

All micro‐organisms were inhibited by both types of PA even in the lowest concentration of 20%.

Significance and Impact of the Study

The feasibility of the usage of PAs produced with wood species planted in large scale in Brazil was evident and the real potential as a basis to produce natural antibacterial and antifungal agents, with real possibility to be used in veterinary and zootechnical applications.  相似文献   

6.

Background

Terpenoids are abundant in the foliage of Eucalyptus, providing the characteristic smell as well as being valuable economically and influencing ecological interactions. Quantitative and qualitative inter- and intra- specific variation of terpenes is common in eucalypts.

Results

The genome sequences of Eucalyptus grandis and E. globulus were mined for terpene synthase genes (TPS) and compared to other plant species. We investigated the relative expression of TPS in seven plant tissues and functionally characterized five TPS genes from E. grandis. Compared to other sequenced plant genomes, Eucalyptus grandis has the largest number of putative functional TPS genes of any sequenced plant. We discovered 113 and 106 putative functional TPS genes in E. grandis and E. globulus, respectively. All but one TPS from E. grandis were expressed in at least one of seven plant tissues examined. Genomic clusters of up to 20 genes were identified. Many TPS are expressed in tissues other than leaves which invites a re-evaluation of the function of terpenes in Eucalyptus.

Conclusions

Our data indicate that terpenes in Eucalyptus may play a wider role in biotic and abiotic interactions than previously thought. Tissue specific expression is common and the possibility of stress induction needs further investigation. Phylogenetic comparison of the two investigated Eucalyptus species gives insight about recent evolution of different clades within the TPS gene family. While the majority of TPS genes occur in orthologous pairs some clades show evidence of recent gene duplication, as well as loss of function.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1598-x) contains supplementary material, which is available to authorized users.  相似文献   

7.
Development of improved Eucalyptus genotypes involves the routine identification of breeding stock and superior clones. Currently, microsatellites and random amplified polymorphic DNA markers are the most widely used DNA-based techniques for fingerprinting of these trees. While these techniques have provided rapid and powerful fingerprinting assays, they are constrained by their reliance on gel or capillary electrophoresis, and therefore, relatively low throughput of fragment analysis. In contrast, recently developed microarray technology holds the promise of parallel analysis of thousands of markers in plant genomes. The aim of this study was to develop a DNA fingerprinting chip for Eucalyptus grandis and to investigate its usefulness for fingerprinting of eucalypt trees. A prototype chip was prepared using a partial genomic library from total genomic DNA of 23 E. grandis trees, of which 22 were full siblings. A total of 384 cloned genomic fragments were individually amplified and arrayed onto glass slides. DNA fingerprints were obtained for 17 individuals by hybridizing labeled genome representations of the individual trees to the 384-element chip. Polymorphic DNA fragments were identified by evaluating the binary distribution of their background-corrected signal intensities across full-sib individuals. Among 384 DNA fragments on the chip, 104 (27%) were found to be polymorphic. Hybridization of these polymorphic fragments was highly repeatable (R2>0.91) within the E. grandis individuals, and they allowed us to identify all 17 full-sib individuals. Our results suggest that DNA microarrays can be used to effectively fingerprint large numbers of closely related Eucalyptus trees.  相似文献   

8.
9.

Background and aims

Eucalyptus plantations cover 20 million hectares on highly weathered soils. Large amounts of nitrogen (N) exported during harvesting lead to concerns about their sustainability. Our goal was to assess the potential of introducing A. mangium trees in highly productive Eucalyptus plantations to enhance soil organic matter stocks and N availability.

Methods

A randomized block design was set up in a Brazilian Ferralsol soil to assess the effects of mono-specific Eucalyptus grandis (100E) and Acacia mangium (100A) stands and mixed plantations (50A:50E) on soil organic matter stocks and net N mineralization.

Results

A 6-year rotation of mono-specific A. mangium plantations led to carbon (C) and N stocks in the forest floor that were 44% lower and 86% higher than in pure E. grandis stands, respectively. Carbon and N stocks were not significantly different between the three treatments in the 0–15?cm soil layer. Field incubations conducted every 4?weeks for the two last years of the rotation estimated net soil N mineralization in 100A and 100E at 124 and 64?kg?ha?1?yr?1, respectively. Nitrogen inputs to soil with litterfall were of the same order as net N mineralization.

Conclusions

Acacia mangium trees largely increased the turnover rate of N in the topsoil. Introducing A. mangium trees might improve mineral N availability in soils where commercial Eucalyptus plantations have been managed for a long time.  相似文献   

10.

Background  

"Candidatus Phytoplasma aurantifolia", is the causative agent of witches' broom disease in Mexican lime trees (Citrus aurantifolia L.), and is responsible for major losses of Mexican lime trees in Southern Iran and Oman. The pathogen is strictly biotrophic, and thus is completely dependent on living host cells for its survival. The molecular basis of compatibility and disease development in this system is poorly understood. Therefore, we have applied a cDNA- amplified fragment length polymorphism (AFLP) approach to analyze gene expression in Mexican lime trees infected by " Ca. Phytoplasma aurantifolia".  相似文献   

11.

Background  

Eucalypts are the most widely planted hardwood trees in the world occupying globally more than 18 million hectares as an important source of carbon neutral renewable energy and raw material for pulp, paper and solid wood. Quantitative Trait Loci (QTLs) in Eucalyptus have been localized on pedigree-specific RAPD or AFLP maps seriously limiting the value of such QTL mapping efforts for molecular breeding. The availability of a genus-wide genetic map with transferable microsatellite markers has become a must for the effective advancement of genomic undertakings. This report describes the development of a novel set of 230 EMBRA microsatellites, the construction of the first comprehensive microsatellite-based consensus linkage map for Eucalyptus and the consolidation of existing linkage information for other microsatellites and candidate genes mapped in other species of the genus.  相似文献   

12.

Background  

Renowned for their fast growth, valuable wood properties and wide adaptability, Eucalyptus species are amongst the most planted hardwoods in the world, yet they are still at the early stages of domestication because conventional breeding is slow and costly. Thus, there is huge potential for marker-assisted breeding programs to improve traits such as wood properties. To this end, the sequencing, analysis and annotation of a large collection of expressed sequences tags (ESTs) from genes involved in wood formation in Eucalyptus would provide a valuable resource.  相似文献   

13.

Background

The change from juvenile to mature phase in woody plants is often accompanied by a gradual loss of rooting ability, as well as by reduced microRNA (miR) 156 and increased miR172 expression.

Results

We characterized the population of miRNAs of Eucalyptus grandis and compared the gradual reduction in miR156 and increase in miR172 expression during development to the loss of rooting ability. Forty known and eight novel miRNAs were discovered and their predicted targets are listed. The expression pattern of nine miRNAs was determined during adventitious root formation in juvenile and mature cuttings. While the expression levels of miR156 and miR172 were inverse in juvenile and mature tissues, no mutual relationship was found between high miR156 expression and rooting ability, or high miR172 expression and loss of rooting ability. This is shown both in E. grandis and in E. brachyphylla, in which explants that underwent rejuvenation in tissue culture conditions were also examined.

Conclusions

It is suggested that in these Eucalyptus species, there is no correlation between the switch of miR156 with miR172 expression in the stems and the loss of rooting ability.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-524) contains supplementary material, which is available to authorized users.  相似文献   

14.
South African terrestrial ecosystems are invaded by hundreds of alien plant species, and large‐scale clearing based on the passive restoration assumption that cleared areas will recover unaided is underway. This study assessed the recovery of vegetation and soil properties, three years following Eucalyptus grandis clearing using fell‐and‐removal and fell‐and‐stackburn methods at Zvakanaka Farm in Limpopo Province, South Africa. The main aim was to ascertain the extent of vegetation and soil recovery, as well as determining which clearing methods facilitate passive vegetation and soil restoration. Results indicate significantly (p < 0.001) lower native species diversity, cover and composition in cleared than in uninvaded sites. However, the recorded low species diversity and composition in cleared sites were more pronounced in the fell‐and‐stackburn than in the fell‐and‐removal sites. Measured soil physical properties varied, with compaction being higher in fell‐and‐removal, whereas soils were more repellent in fell‐and‐stackburn sites. The study concludes that vegetation and soil recovery, following E. grandis clearing, is complex and involves several interacting factors, which are linked to invasion history and intensity. Therefore, for vegetation and soil properties to recover, following E. grandis removal, the clearing programme should consider active restoration techniques, for example soil manipulation and native plant seeding.  相似文献   

15.
Elaeocarpus grandis (Blue Quandong) is a common rainforest tree with a widespread distribution across northeastern Australia, while the related species E. sp. Rocky Creek and E. williamsianus are more restricted in their distribution. Highly polymorphic markers are required to provide genetic information on these species, which will aid in developing effective conservation and management strategies. Eight microsatellite loci were isolated and characterized in E. grandis, and tested in the rare species and other species of the Elaeocarpaceae. Cross‐species transferability was most successful within Elaeocarpus, with six and eight loci transferring to E. sp. Rocky Creek and E. williamsianus, respectively.  相似文献   

16.

Background  

Protein expression in E. coli is the most commonly used system to produce protein for structural studies, because it is fast and inexpensive and can produce large quantity of proteins. However, when proteins from other species such as mammalian are produced in this system, problems of protein expression and solubility arise [1]. Structural genomics project are currently investigating proteomics pipelines that would produce sufficient quantities of recombinant proteins for structural studies of protein complexes. To investigate how the E. coli protein expression system could be used for this purpose, we purified apoptotic binary protein complexes formed between members of the Caspase Associated Recruitment Domain (CARD) family.  相似文献   

17.

Background

Carbohydrate metabolism is a key feature of vascular plant architecture, and is of particular importance in large woody species, where lignocellulosic biomass is responsible for bearing the bulk of the stem and crown. Since Carbohydrate Active enZymes (CAZymes) in plants are responsible for the synthesis, modification and degradation of carbohydrate biopolymers, the differences in gene copy number and regulation between woody and herbaceous species have been highlighted previously. There are still many unanswered questions about the role of CAZymes in land plant evolution and the formation of wood, a strong carbohydrate sink.

Results

Here, twenty-two publically available plant genomes were used to characterize the frequency, diversity and complexity of CAZymes in plants. We find that a conserved suite of CAZymes is a feature of land plant evolution, with similar diversity and complexity regardless of growth habit and form. In addition, we compared the diversity and levels of CAZyme gene expression during wood formation in trees using mRNA-seq data from two distantly related angiosperm tree species Eucalyptus grandis and Populus trichocarpa, highlighting the major CAZyme classes involved in xylogenesis and lignocellulosic biomass production.

Conclusions

CAZyme domain ratio across embryophytes is maintained, and the diversity of CAZyme domains is similar in all land plants, regardless of woody habit. The stoichiometric conservation of gene expression in woody and non-woody tissues of Eucalyptus and Populus are indicative of gene balance preservation.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1571-8) contains supplementary material, which is available to authorized users.  相似文献   

18.
 The objective of this study was to use random amplified polymorphic DNA (RAPD) to determine the genetic location and effects of genomic regions controlling wood density, stem growth and stem form in two species of Eucalyptus. Two hundred F1 trees generated from an interspecific cross E. urophylla×E. grandis between two elite trees were used. Genetic maps were constructed for each parent with markers segregating in the 1:1 ratio in FS progeny. A total of 86 and 92 markers distributed among 11 linkage groups covered 1295 cM and 1312 cM for the E. urophylla and E. grandis parent, respectively. Traits were measured three times up to selection age (38 months). The magnitude of the phenotypic variation explained by the joint action of the segregating quantitative trait alleles indicated that genetic factors of large effect were involved in the control of the studied characters. Several regions controlling part of the variation for the studied traits were identified by interval mapping. Some regions of the genome exerted effects on more than one trait, providing a genetic explanation for at least some of the correlation between the traits. On the basis of an age-by-age analysis, a partial stability of QTL expression was observed with 68% of the QTL being expressed at two ages and 32% being age-specific. No QTL were significant for all three ages. Taking advantage of repeated measurements on the same material across different ages, we investigated with a maximum statistical power, the effect of marker genotype on traits, with age and QTL×age interaction effects being removed. A two-way analysis of variance made it possible to detect significant marker-trait associations over the period studied. Most of them had already been detected in the annual analysis. This result is very encouraging for the application of marker information to the early selection of hybrid trees to be vegetatively propagated for the production of clonal varieties. Received: 2 December 1996/Accepted: 4 April 1997  相似文献   

19.

Background  

Messenger RNA decay is an important mechanism for controlling gene expression in all organisms. The rate of the mRNA degradation directly affects the steady state concentration of mRNAs and therefore influences the protein synthesis. RNaseE has a key importance for the general mRNA decay in E.coli. While RNaseE initiates the degradation of most mRNAs in E.coli, it is likely that the enzyme is also responsible for the degradation of recombinant RNAs. As RNaseE is essential for cell viability and knockout mutants cannot be cultured, we investigated the possibility for a down-regulation of the intracellular level of RNaseE by antisense RNAs. During this study, an antisense RNA based approach could be established which revealed a strong reduction of the intracellular level of RNaseE in E.coli.  相似文献   

20.

Background and aims

The introduction of Acacia mangium in Eucalyptus urophylla x grandis stands improves wood production on poor sandy soils of coastal plains of the Congo. We assessed the impact of A. mangium plantations in pure stands and in mixture with eucalypt trees on the physico-chemical properties of the soil after one rotation.

Methods

Bulk densities, N, C, available P and pH were determined on soil sampled in the pure acacia (100A), pure eucalypt (100E) and mixed-species (50A:50E) stands. N and P were determined in aboveground litters and in leaves, bark and wood of trees.

Results

N and C concentrations were higher in 50A:50E than in 100A and 100E in the top soil layer. The pH was lower in 100A and higher in 100E than in 50A:50E. The available P was lower in 50A:50E than in 100A and 100E. Leaf N was lower in 50A:50E than in 100A for acacia, and higher than in 100E for eucalypt. Leaf P was similar for acacia but higher for eucalypt in 50A:50E than in 100E. In contrast to P, the amount of N in aboveground litterfall increased with the proportion of acacia in the stand.

Conclusions

The introduction of acacia trees in eucalypt plantations increased C and N contents of the soil but decreased the available P content in the mixed-species stand. This may be related to a higher uptake of P needed to maintain the N:P stoichiometry in eucalypt leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号