首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pyruvate oxidase (PyOD) is a very useful enzyme for clinical diagnostic applications and environmental monitor. Optimization of the fermentation medium for maximization of PyOD constitutively, production by Escherichia coli DH5α/pSMLPyOD was carried out. Response surface methodology (RSM) was used to optimize the medium constituents. A 26–2 fractional factorial design (first order model) was carried out to identify the significant effect of medium components towards PyOD production. Statistical analysis of results shows that yeast extract, ammonium sulfate and composite phosphate were significant factors on PyOD production. The optimized values of these three factors were obtained by RSM based on the result of a 23 central composite rotatable design. Under these proposed optimized medium, the model predicted a PyOD activity of 610 U/L and via experimental rechecking the model, an activity of 670 U/L was attained.  相似文献   

2.
Production of cyclodextrin glycosyltransferase (CGTase) from Klebsiella pneumoniae pneumoniae AS-22 was optimized in shake flasks using a statistical experimental design approach. Effect of various components in the basal medium, like carbon, nitrogen, phosphorus, and mineral sources as well as initial pH and temperature, were tested on enzyme production. The optimum concentrations of the selected media components were determined using statistical experimental designs. Two level fractional factorial designs in five variables, namely, dextrin, peptone, yeast extract, ammonium dihydrogen orthophosphate, and magnesium sulphate concentrations were constructed. The optimum medium composition thus found consisted of 49.3 g/L dextrin, 20.6 g/L peptone, 18.3 g/L yeast extract, 6.7 g/L ammonium dihydrogen orthophosphate, and 0.5 g/L magnesium sulphate. The maximum CGTase activity obtained was 21.4 U/mL in 28 h of incubation. The cell growth and CGTase production profiles were studied with the optimized medium in shake flasks and in 1-L fermenters. It was observed that the enzyme production was growth associated both in shake flask and in fermenter, although it was slower in shake flask. The maximum CGTase activity obtained in the fermenter was 32.5 U/mL in 16 h. The optimized medium resulted in about 9-fold increase in the enzyme activity as compared to that obtained in the basal medium in shake flask as well as in fermenter.  相似文献   

3.
Five strains of naringin-degrading bacteria were isolated and found to be positive for extracellular naringinase activity. The one that showed highest activity in the selective medium was identified by 16S rRNA analysis as Bacillus methylotrophicus. The best combination of carbon–nitrogen source was determined by employing two-level full factorial analyses, comprising 24 experiments in shake flasks. Sucrose–yeast extract showed significant increase in naringinase activity (7.46 U/L) compared to the basal medium. Naringinase production was found to be inducible and naringin was found to be the best inducer among naringin, naringenin, hesperidin, and L-rhamnose. Inoculum size of 2% (v/v) and age of 48 hr favored naringinase and biomass production. Highest naringinase activity of 8 U/L was observed at the initial medium pH of 6. Response surface modeling was applied based on central composite design to determine the effects of three independent variables (sucrose, yeast extract, and naringin) and their mutual interactions. In total, 20 experiments were conducted and a statistical model was developed, which predicted naringinase production of 10.61 U/L. Subsequently, verification experiments were conducted and validity of the model was verified. Bioreactor studies conducted with the optimized medium showed an enzyme production of 12.05 U/L within 34 hr of fermentation.  相似文献   

4.
The cyclodextrin glycosyltransferase (CGTase) of the recombinants Escherichia coli pAD26 cells immobilized on cotton was optimally produced by statistical methodology. Primarily, carbon and nitrogen sources were selected by one-factor-at-a-time method. Wheat starch, Casamino acid, Edamin and Hy-soy were identified as the best nutrients. These sources were secondly confirmed by Plackett-Burman design (fifteen variables were studied with sixteen experiments), as the most significant components with respect to CGTase production. In the third step, concentration of most significant factors and their interaction were optimized with a Box-Behnken experimental design. Under the optimized conditions (agitation 200 rpm, yeast extract concentration 20 g/L, wheat starch concentration 10 g/L and Hy-soy concentration 2.5 g/L), CGTase yield 145.11 U/mL was 3.6 and 23 folds higher than those obtained by the use of the initial conditions (39.77 U/mL) and free cells (6.37 U/mL), respectively.  相似文献   

5.
Culture conditions were optimized for the growth and carbonyl reductase production by a novel yeast strain Candida viswanathii. Response surface methodology was applied for the critical medium components (initial pH, mannitol, yeast extract and calcium chloride) identified earlier by one-factor-at-a-time approach. Central composite design was used for the optimization studies. Using this methodology, the optimal values for the concentration of mannitol, initial pH, yeast extract and calcium chloride were 1.9, 7.5, 1.6 and 4, respectively. This medium was projected to produce, theoretically, growth having an optical density of 1.1 (600 nm) and an enzyme activity of 81.5 U/ml. Using this optimized medium, an experimental growth of 1.1 OD (600 nm) and enzyme activity 80.9 U/ml verified the applied methodology. This approach for medium optimization led to an enhancement of the growth and enzyme activity by 1.3 and 2.3 times higher, respectively, as compared to the unoptimized media.  相似文献   

6.
We found that -caprolactam is a new powerful inducer for the formation of Rhodococcus rhodochrous J1 nitrilase. When Rhodococcus rhodochrous J1 cells were cultivated at 28°C for 120 h in a nutrient medium supplemented with 0.5% (w/v) -caprolactam, an enormous amount of nitrilase was formed in the cells which corresponded to approximately 30% of all soluble protein. The level of -caprolactam in the culture broth barely decreased in the course of cultivation. -Butyrolactam and -valerolactam also caused effective induction. The induction of nitrilase formation by -caprolactam was also observed in some other Rhodococcus strains.  相似文献   

7.
The production of cellulase by Bacillus subtilis MU S1, a strain isolated from Eravikulam National Park, was optimized using one-factor-at-a-time (OFAT) and statistical methods. Physical parameters like incubation temperature and agitation speed were optimized using OFAT and found to be 40?°C and 150?rpm, respectively, whereas, medium was optimized by statistical tools. Plackett-Burman design (PBD) was employed to screen the significant variables that highly influence cellulase production. The design showed carboxymethyl cellulose (CMC), yeast extract, NaCl, pH, MgSO4 and NaNO3 as the most significant components that affect cellulase production. Among these CMC, yeast extract, NaCl and pH showed positive effect whereas MgSO4 and NaNO3 were found to be significant at their lower levels. The optimum levels of the components that positively affect enzyme production were determined using response surface methodology (RSM) based on central composite design (CCD). Three factors namely CMC, yeast extract and NaCl were studied at five levels whilst pH of the medium was kept constant at 7. The optimal levels of the components were CMC (13.46?g/l), yeast extract (8.38?g/l) and NaCl (6.31?g/l) at pH 7. The maximum cellulase activity in optimized medium was 566.66?U/ml which was close to the predicted activity of 541.05?U/ml. Optimization of physical parameters and medium components showed an overall 3.2-fold increase in activity compared to unoptimized condition (179.06?U/ml).  相似文献   

8.
A potential application of inulinase in the food industry is the production of fructoligosaccharides (FOS) by the transfructosilation of sucrose. The FOSs present many interesting functional properties besides their ability to increase the shelf-life and flavor of many products. The use of an industrial medium represents a good alternative to producing inulinase at low cost, since the activity may improve, or at least remain the same, as that obtained using a synthetic medium. This work was an optimization study of the inulinase production by Kluyveromyces marxianus NRRL Y-7571 using industrial pre-treated culture medium in a bioreactor employing a sequential strategy of experimental design. Initially, a Plackett–Burman (Screening Design) design was used, where the studied variables were molasses, corn steep liquor, yeast extract concentration, and agitation and aeration rates. After the analysis of the effects, a central composite rotational design (CCRD) was carried out. The optimized condition for the inulinase production was: 250 g/l of molasses, 80 g/l of corn steep liquor, 6 g/l of yeast extract, 300 rpm of agitation and 1.5 vvm aeration rate, which resulted in an enzymatic activity of 1,317 ± 65 U/ml.  相似文献   

9.
The heterologous production of iso-migrastatin (iso-MGS) was successfully demonstrated in an engineered S. lividans SB11002 strain, which was derived from S. lividans K4-114, following introduction of pBS11001, which harbored the entire mgs biosynthetic gene cluster. However, under similar fermentation conditions, the iso-MGS titer in the engineered strain was significantly lower than that in the native producer — Streptomyces platensis NRRL 18993. To circumvent the problem of low iso-MGS titers and to expand the utility of this heterologous system for iso-MGS biosynthesis and engineering, systematic optimization of the fermentation medium was carried out. The effects of major components in the cultivation medium, including carbon, organic and inorganic nitrogen sources, were investigated using a single factor optimization method. As a result, sucrose and yeast extract were determined to be the best carbon and organic nitrogen sources, resulting in optimized iso-MGS production. Conversely, all other inorganic nitrogen sources evaluated produced various levels of inhibition of iso-MGS production. The final optimized R2YE production medium produced iso-MGS with a titer of 86.5 mg/L, about 3.6-fold higher than that in the original R2YE medium, and 1.5 fold higher than that found within the native S. platensis NRRL 18993 producer.  相似文献   

10.
To improve dextransucrase production from Leuconostocmesenteroides NRRL B-640 culture medium was screened and optimized using the statistical design techniques of Plackett-Burman and response surface methodology (RSM). Plackett-Burman design with six variables viz. sucrose, yeast extract, K2HPO4, peptone, beef extract and Tween 80 was performed to screen the nutrients that were significantly affecting dextransucrase production. The variables sucrose, K2HPO4, yeast extract and beef extract showed above 90% confidence levels for dextransucrase production and were considered as significant factors for optimization using response surface methodology. 2(4)-central composite design was used for RSM optimization. The experimental results were fitted to a second-order polynomial model which gave a coefficient of determination R2=0.95. The optimized composition of 30g/l sucrose, 18.9g/l yeast extract, 19.4g/l K2HPO4 and 15g/l beef extract gave an experimental value of dextransucrase activity of 10.7U/ml which corresponded well with the predicted value of 10.9U/ml by the model.  相似文献   

11.
采用单因素实验确定重组毕赤酵母产木聚糖酶生长相的最适条件,然后利用Plackett—Bur—man实验设计对诱导相培养基成分和培养条件的10个因素进行筛选,方差分析结果表明,影响木聚糖酶表达的主要因子为酵母膏、诱导pH和摇床转速;在此基础上,用Box—Behnken的响应面方法对3个因素进行进一步优化,当酵母膏为11.13彰L,pH为6.38,摇床转速为228r/min时酶活有最大值,为262.77u/mL,较优化前提高了175.44%。优化后的摇瓶发酵条件应用于7L发酵罐并连续诱导培养120h,发现诱导72h后的木聚糖酶酶活最高,为2054.89u/mL。  相似文献   

12.
Laccase production from a novel actinobacterial strain, Streptomyces psammoticus, MTCC 7334 was optimized in solid-state fermentation. The process parameters were initially optimized by the conventional “one factor at a time” approach, and the optimal levels of the factors that had considerable influence on enzyme production were identified by response surface methodology. Rice straw was identified as a suitable substrate for laccase production (17.3 U/g), followed by coffee pulp (15.8 U/g). Other optimized conditions were particle size, 500–1,000 μm (21.2 U/g); initial moisture content, 65% (26.8 U/g); pH of moistening solution, 8.0 (26.9 U/g); incubation temperature, 32°C (27.6 U/g) and inoculum size, 1.5 × 107 CFU (33.8 U/g). Yeast extract served as the best nitrogen source (34.8 U/g). No enhancement in enzyme yield was observed with carbon supplementation. The level of yeast extract, inoculum size and copper sulphate were optimized statistically. Statistical optimization performed using a central composite design resulted in threefold increase in laccase activity (55.4 U/g) as compared to the unoptimized medium (17.3 U/g). The upgrading of fermented rice straw for fodder enhancement is also discussed briefly.  相似文献   

13.
A face centered central composite design was employed to investigate the interactive effects of four variables, viz. concentrations of sucrose, yeast extract, sodium chloride, and glutamine, identified earlier by one-factor-at-a-time approach, on glutaminase production by Zygosaccharomyces rouxii. A significant influence of yeast extract on glutaminase production was noted. Response surface methodology (RSM) showed that a medium containing (g/l) sucrose, 17.8; yeast extract, 48.0; glutamine, 5.0 and sodium chloride, 55.6 to be optimum for the production of glutaminase. This medium was projected to produce, theoretically, an enzyme activity of 149.98 U/l and a specific activity of 0.488 U/mg protein. The applied methodology was validated using this optimized media and enzyme activity 155.89+/-1.68 U/l and specific activity of 0.468+/-0.088 U/mg protein was obtained. Further, this optimization strategy combined with an increase in inoculum enhanced the enzyme activity and specific activity by 2.94 and 3.58 fold, respectively, as compared to the unoptimized media.  相似文献   

14.
Effect of medium composition and culture conditions on agarase production by Agarivorans albus YKW-34 was investigated in shake flasks. The most suitable carbon source, nitrogen source, and culture temperature were agar, yeast extract, and 25 °C, respectively, for agarase production by one-factor-at-a-time design. The nutritional components of the medium and culture conditions were analyzed by Plackett–Burman design. Among the nine factors studied, agar, yeast extract, and initial pH had significant effects on agarase production (p < 0.05). The optimum levels of these key variables were further determined using a central composite design. The highest agarase production was obtained in the medium consisting of 0.23% agar and 0.27% yeast extract at initial pH 7.81. The whole optimization strategy enhanced the agarase production from 0.23 U/ml to 0.87 U/ml. The economic medium composition and culture condition as well as the dominant occupation of agarase with high activity in culture fluid enlighten the potential application of A. albus YKW-34 for the production of agarase.  相似文献   

15.
来自恶臭假单胞菌的腈水解酶具有高效催化3-氰基吡啶产烟酸的能力,对表达该酶的基因psn进行发酵和产酶条件优化,通过对C源、N源、磷酸盐、金属离子、温度、诱导剂浓度和诱导时间进行单因素考察,获得最适培养基条件(g/L):葡萄糖5、蛋白胨15、酵母粉5、(NH4)2SO45、K2HPO424.5、KH2PO45.76、MgSO40.48;最佳诱导条件:培养2.5 h后添加IPTG诱导,浓度0.2 mmol/L,诱导温度30℃。在该条件下培养,重组大肠杆菌的腈水解酶比酶活可达到45.67 U/mL,比优化前提高了2.26倍。在此基础上,于5 L发酵罐上进行C、N源的补料研究,获得最适分批补料策略,发现其腈水解酶活力可达到75.40 U/mL,是优化前的3.74倍。  相似文献   

16.
利用基于统计学的实验设计RSM(Response surface methodology)优化了Burkholderia cepacia CF-66产新型抗菌活性物质CF66I的发酵培养基组成。首先,用部分重复因子实验对培养基组分NH4Cl,MgSO4·7H2O,柠檬酸钠及酵母粉浓度对菌株产CF66I的影响进行评价,找出主要影响因子为柠檬酸钠和酵母粉。两者均为正影响,其他组分对CF66I活性的影响不显著。其次用最陡爬坡路径逼近最大响应区域。最后用中心组合设计及响应面分析确定主要影响因子的最佳浓度。菌株在优化培养基中培养较初始培养基CF66I活性提高了约两倍。  相似文献   

17.
为了实现来源于Streptomyces sp. FA1的木聚糖酶的高效胞外分泌表达,对E.coli BL21(DE3)/pET20b(+)/coe/xynA基因工程菌的发酵产酶诱导条件进行优化,获得最优的诱导条件为25 ℃发酵6 h后添加终浓度为0.4 mmol/L的IPTG。在此基础上对发酵培养基进一步优化,得到最优培养基成分为:甘油11 g/L,酵母粉24 g/L,蛋白胨8 g/L,磷酸盐浓度89 mmol/L,镁离子4 mmol/L。最终酶活达到780.2 U/ml,为未优化前的2.2倍,是目前大肠杆菌摇瓶发酵产木聚糖酶的最高表达水平,为实现该酶的工业化生产奠定基础。  相似文献   

18.
PigC is a synthetase that catalyzes the condensation of 4-methoxy-2,2′-bipyrrole-5-carboxyaldehyde and 2-methyl-3-amylpyrrole to produce prodigiosin, which has a wide variety of impressive biological properties. In this study, we optimized PigC production from engineered Escherichia coli BL21(DE3). Investigation of different induction strategies revealed that autoinduction was the most appropriate method for PigC expression. As a result, PigC activity was elevated to 75.7?U/mL, nearly 2.1-fold higher than that with induction by isopropy-β-d-thiogalactoside. To achieve maximum enzyme production, the automedium components were optimized. “Single-factor experiments” showed that PigC production was greatly affected by the concentrations of glucose, yeast extract, and lactose. The Box–Behnken design for response surface methodology was then used to determine the optimal concentrations of these three components. According to a statistical approach, the optimum values of the three most influential parameters were 0.73?g/L glucose, 13.17?g/L yeast extract, and 5.86?g/L lactose. In the optimized automedium, the best PigC activity was obtained at 179.3?U/mL, which was 2.4-fold higher than using the initial medium. This study maximized PigC production as a foundation for further study and future industrial application.  相似文献   

19.
本文通过对产酶诱导条件及发酵培养基进行优化,成功提高了产腈水解酶基因工程菌E. coli BL21(DE3)-pETNYNit的产酶水平。研究结果显示,最佳发酵培养基为:葡萄糖0.2%、甘油0.7%(v/v)、蛋白胨1.2%、酵母膏0.8%、NaCl 0.3%、(NH4)2SO40.3%、NH4Cl 0.13%、Na2 HPO4·12H2 O 1.04%、KH2 PO40.39%、MgSO4·7H2 O 0.03%,pH 7.2。最佳产酶诱导条件为:发酵4 h时加入0.5 mmol/L IPTG,然后在28℃、240 r/min下诱导腈水解酶基因表达14 h~16 h。采用优化方案,重组菌产酶水平可提升至0.9~1×105 U,与野生菌株的产酶水平相比,提高幅度超过50%。同时重组菌培养仅需24 h,培养周期缩短超过50 h。  相似文献   

20.
Abstract

Tyrosine phenol lyase (TPL) is a robust biocatalyst for the production of L-dihydroxyphenylalanine (L-DOPA). The improvement of TPL production is conducive to the industrial potential. In this study, the optimization of culture medium of recombinant Escherichia coli harboring TPL from Fusobacterium nucleatum (Fn-TPL) was carried out. Sucrose and combination of yeast extract and peptone were selected as carbon and nitrogen source, respectively. Their optimal concentrations were determined by Box-Behnken design and the synergistic effect between yeast extract and peptone was found to be significant, with p-value < 0.05. The DO-STAT fed-batch fermentation under optimized culture condition was established and the oxygen level was fixed at 20%. Both the biomass and Fn-TPL activity were significantly increased, which were 35.6 g dcw/L and 12292 U/L, respectively. The results obtained significantly promote the industrial production of L-DOPA production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号