首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
One of the four operons required for cobalamin biosynthesis in Bacillus megaterium is also associated with sirohaem synthesis, and contains three genes, sirA, sirB and sirC. By undertaking functional complementation experiments and in vitro assays using recombinantly produced enzymes, we have been able to demonstrate that (1) SirA acts as a uroporphyrinogen III methyltransferase, transforming uroporphyrinogen III into precorrin-2, (2) SirC acts as an NAD(+) dehydrogenase, responsible for the oxidation of precorrin-2 into sirohydrochlorin, and (3) SirB acts as a ferrochelatase, responsible for the insertion of a ferrous ion into sirohydrochlorin to give sirohaem. Comparative sequence analysis reveals that the primary structure of SirB is highly similar to that of the cobalt chelatase involved in cobalamin biosynthesis in Bacillus megaterium, CbiX, with the exception that CbiX contains a C-terminal histidine-rich motif. Surprisingly, CbiX has been shown (using EPR) to contain a 4Fe-4S centre, a redox centre that is absent from SirB.  相似文献   

2.
The cobaltochelatase required for the synthesis of vitamin B12 (cobalamin) in the archaeal kingdom has been identified as CbiX through similarity searching with the CbiX from Bacillus megaterium. However, the CbiX proteins in the archaea are much shorter than the CbiX proteins found in eubacteria, typically containing less than half the number of amino acids in their primary structure. For this reason the shorter CbiX proteins have been termed CbiXS and the longer versions CbiXL. The CbiXS proteins from Methanosarcina barkeri and Methanobacter thermoautotrophicum were overproduced in Escherichia coli as recombinant proteins and characterized. Through complementation studies of a defined chelatase-deficient strain of E. coli and by direct in vitro assays the function of CbiXS as a sirohydrochlorin cobaltochelatase has been demonstrated. On the basis of sequence alignments and conserved active site residues we suggest that CbiXS may represent a primordial chelatase, giving rise to larger chelatases such as CbiXL, SirB, CbiK, and HemH through gene duplication and subsequent variation and selection. A classification scheme for chelatases is proposed.  相似文献   

3.
4.
5.
Superoxide dismutases are metalloenzymes involved in protecting cells from oxidative damage arising from superoxide radical or reactive oxygen species produced from superoxide. Examples of enzymes containing Cu, Mn, and Fe as the redox-active metal have been characterized. Recently, a SOD containing one Ni atom per subunit was reported. The amino acid sequence of the NiSOD deduced from the nucleotide sequence of the structural gene sodN from Streptomyces seoulensis is reported and has no homology with other SODs. X-ray absorption spectroscopic studies coupled with EPR of the Ni center show that the Ni in the oxidized (as isolated) enzyme is in a five-coordinate site composed of three S-donor ligands, one N-donor, and one other O- or N-donor. This unique coordination environment is modified by the loss of one N- (or O-) donor ligand in the dithionite-reduced enzyme. The NiSOD activity was determined by pulse radiolysis, and a value of kcat = 1.3 x 10(9) M-1 s-1 per Ni was obtained. The rate is pH sensitive and drops off rapidly above pH 8. The results characterize a novel class of metal center active in catalyzing the redox chemistry of superoxide and, when placed in context with other nickel enzymes, suggest that thiolate ligation is a prerequisite for redox-active nickel sites in metalloenzymes.  相似文献   

6.
7.
Optical resolution for (2S,3R) and (2R,3S)-hydroxycitric acid (HCA) enantiomers was developed using chiral column chromatography. HCA from Bacillus megaterium G45C and Streptomyces sp. U121, newly isolated in our previous study, was analyzed to determine the absolute configuration. These results indicate that both strains generate optically pure (2S,3R)-hibiscus type HCA enantiomer.  相似文献   

8.
The glk gene from Corynebacterium glutamicum was isolated by complementation using Escherichia coli ZSC113 (ptsG ptsM glk). We sequenced a total of 3072 bp containing the 969-bp open reading frame encoding glucose kinase (Glk). The glk gene has a deduced molecular mass of 34.2 kDa and contains a typical ATP binding site. Comparison with protein sequences revealed homologies to Glk from Streptomyces coelicolor (43%) and Bacillus megaterium (35%). The glk gene in C. glutamicum was inactivated on the chromosome via single crossover homologous recombination and the resulting glk mutant was characterized. Interestingly, the C. glutamicum glk mutant showed poor growth on rich medium such as LB medium or brain heart infusion medium in the presence or absence of glucose, fructose, maltose or sucrose as the sole carbon source. Growth yield was reduced significantly when maltose was used as the sole carbon source using minimal medium. The growth defect of glk mutant on rich medium was complemented by a plasmid-encoded glk gene. A chromosomal glk-lacZ fusion was constructed and used to monitor glk expression, and it was found that glk was expressed constitutively under all tested conditions with different carbon sources.  相似文献   

9.
A unique family of proteins have been identified in the Deinococcus genus with an N-terminal cobalamin (vitamin B(12)) chelatase domain denoted CbiX and an additional unique C-terminal domain with unknown function. Here we report the first crystal structure from this new family of proteins with the structure of Deinococcus radiodurans protein DR2241. The structure reveals a multi-domain protein where domains A (residues 1-132) has the same fold as the small CbiX (CbiX(S)), domains A and B (residues 1-272) follow the chelatase super-family fold and the two additional unique domains C and D have no structural homologues. Domain D harbours the sequence motifs CxxC and CxxxC, in which DR2241 gives the first evidence that these motifs bind a [4Fe-4S] iron-sulphur cluster. In solution there are indications of multimeric forms, and in the crystallographic asymmetric unit a tetramer is found where domains C and D are involved in stabilising the tetrameric assembly.  相似文献   

10.
Parallel studies were performed with methionineless derivatives of Escherichia coli 15 T(-) and Bacillus megaterium KM: T(-). Methylated bases are present in the total cell ribonucleic acid (RNA) of B. megaterium. The level of RNA methylation in E. coli is about 60% greater than that in B. megaterium. Although E. coli deoxyribonucleic acid (DNA) was found to contain 0.12% 5-methylcytosine (5-MC) and 0.24% 6-methylaminopurine (6-MA), methylated bases were not detected in the DNA of B. megaterium. Assuming a molecular weight of 7 x 10(9) daltons for B. megaterium DNA, it was calculated that this organism could not contain more than one molecule of 5-MC or 6-MA per genome, and that possibly no methylated bases were present. Methylated bases were also not detected in the DNA of thymine-starved B. megaterium. Crude extracts of this organism possess RNA methylase activity but no detectable DNA methylase activity.  相似文献   

11.
12.
The side chain of the antifungal antibiotic ansatrienin A from Streptomyces collinus contains a cyclohexanecarboxylic acid (CHC)-derived moiety. This moiety is also observed in trace amounts of omega-cyclohexyl fatty acids (typically less than 1% of total fatty acids) produced by S. collinus. Coenzyme A-activated CHC (CHC-CoA) is derived from shikimic acid through a reductive pathway involving a minimum of nine catalytic steps. Five putative CHC-CoA biosynthetic genes in the ansatrienin biosynthetic gene cluster of S. collinus have been identified. Plasmid-based heterologous expression of these five genes in Streptomyces avermitilis or Streptomyces lividans allows for production of significant amounts of omega-cyclohexyl fatty acids (as high as 49% of total fatty acids). In the absence of the plasmid these organisms are dependent on exogenously supplied CHC for omega-cyclohexyl fatty acid production. Doramectin is a commercial antiparasitic avermectin analog produced by fermenting a bkd mutant of S. avermitilis in the presence of CHC. Introduction of the S. collinus CHC-CoA biosynthetic gene cassette into this organism resulted in an engineered strain able to produce doramectin without CHC supplementation. The CHC-CoA biosynthetic gene cluster represents an important genetic tool for precursor-directed biosynthesis of doramectin and has potential for directed biosynthesis in other important polyketide-producing organisms.  相似文献   

13.
We have attempted to undertake genetic analysis in Bacillus megaterium using the technique of protoplast fusion that has been successfully applied in Staphylococcus and Streptomyces. Efficient production of protoplasts, fusion and regeneration techniques have been established. However, variability in numbers and types of recombinants using two-, three-, and four-factor crosses was observed throughout these studies. No linkages were detected, even between loci known to be linked by cotransduction with bacteriophage MP13. These results were similar to those reported by Alf?ldi and coworkers using B. megaterium strain 216, even though the experimental design was significantly changed. During initial subculturing, segregants were observed in a 1:2:2 ratio of noncomplementing diploids:parental-1:parental-2. The ratio changed dramatically after seven subcultures. Double recombinants appeared after nine subcultures. These results corroborate those reported in B. subtilis and suggest that there is a locus-inactivation phenomenon present in Bacillus which is not evident in Streptomyces or Staphylococcus. Until the mechanism is elucidated, protoplast fusion should not be used for chromosomal mapping in B. megaterium. However, it can be used to transfer plasmids among the bacilli at a frequency of 10(-5)-10(-6) per regenerated protoplast.  相似文献   

14.
A sucrose-inducible promoter system (P(sacB)) from Bacillus megaterium was identified using a secretome approach. It was successfully employed for the extracellular production of the homologous levansucrase SacB (4252.4 U l(-1)) and the heterologous green fluorescent protein GFP (7.9 mg g(CDW)(-1)). Mutational analysis of B. megaterium P(sacB) allowed the identification of important promoter elements. The sucrose-inducible promoter provides a useful alternative to the established xylose-inducible promoter system (P(xylA)) for recombinant gene expression in B. megaterium.  相似文献   

15.
In this study, the whole genome of Streptomyces peucetius ATCC 27952 was analyzed and two superoxide dismutases (SODs), named sp-sod1 and sp-sod2, were identified. The sp-sod1 is a putative Fe-Zn sod that is 636 bp in length. The sp-sod2 is a putative NiSOD that is 396 bp in length. The deduced amino acid sequence of sp-sod1 shared approximately 85 ∼ 90% identity with the iron sod of S. griseus, S. coelicolor A3(2), and S. avermitilis MA-4680 whereas sp-sod2 shared approximately 87 ∼ 94% identity with S. avermitilis, S. coelicolor A3(2) and S. seoulensis. The sp-sod1 was characterized to be FeSOD in the sod mutant E. coli QC871. The N-terminal deleted sp-sod2 along with a putative signal peptidase sp-sodX, which was immediately downstream, was co-expressed in E. coli. This recombinant E. coli strain did not produce the processed mature Sp-SOD2 unlike S. coelicolor Müller. However, Sp-SOD2 was confirmed to be NiSOD in S. lividans TK24.  相似文献   

16.
A novel catabolic transformation of vanillic acid (4-hydroxy-3-methoxybenzoic acid) by microorganisms is reported. Several strains of Bacillus megaterium and a strain of Streptomyces are shown to convert vanillate to guaiacol (o-methoxyphenol) and CO2 by nonoxidative decarboxylation. Use of a modified most-probable-number procedure shows that numerous soils contain countable numbers (10(1) to 10(2) organisms per g of dry soil) of aerobic sporeformers able to convert vanillate to guaiacol. Conversion of vanillate to guaiacol by the microfloras of most-probable-number replicates was used as the criterion for scoring replicates positive or negative. Guaiacol was detected by thin-layer chromatography. These results indicate that the classic separations of catabolic pathways leading to specific ring-fashion substrates such as protocatechuate and catechol are often interconnectable by single enzymatic transformations, usually a decarboxylation.  相似文献   

17.
The Streptomyces glaucescens beta-ketoacyl-acyl carrier protein (ACP) synthase III (KASIII) initiates straight- and branched-chain fatty acid biosynthesis by catalyzing the decarboxylative condensation of malonyl-ACP with different acyl-coenzyme A (CoA) primers. This KASIII has one cysteine residue, which is critical for forming an acyl-enzyme intermediate in the first step of the process. Three mutants (Cys122Ala, Cys122Ser, Cys122Gln) were created by site-directed mutagenesis. Plasmid-based expression of these mutants in S. glaucescens resulted in strains which generated 75 (Cys122Ala) to 500% (Cys122Gln) more straight-chain fatty acids (SCFA) than the corresponding wild-type strain. In contrast, plasmid-based expression of wild-type KASIII had no effect on fatty acid profiles. These observations are attributed to an uncoupling of the condensation and decarboxylation activities in these mutants (malonyl-ACP is thus converted to acetyl-ACP, a SCFA precursor). Incorporation experiments with perdeuterated acetic acid demonstrated that 9% of the palmitate pool of the wild-type strain was generated from an intact D(3) acetyl-CoA starter unit, compared to 3% in a strain expressing the Cys122Gln KASIII. These observations support the intermediacy of malonyl-ACP in generating the SCFA precursor in a strain expressing this mutant. To study malonyl-ACP decarboxylase activity in vitro, the KASIII mutants were expressed and purified as His-tagged proteins in Escherichia coli and assayed. In the absence of the acyl-CoA substrate the Cys122Gln mutant and wild-type KASIII were shown to have comparable decarboxylase activities in vitro. The Cys122Ala mutant exhibited higher activity. This activity was inhibited for all enzymes by the presence of high concentrations of isobutyryl-CoA (>100 microM), a branched-chain fatty acid biosynthetic precursor. Under these conditions the mutant enzymes had no activity, while the wild-type enzyme functioned as a ketoacyl synthase. These observations indicate the likely upper and lower limits of isobutyryl-CoA and related acyl-CoA concentrations within S. glaucescens.  相似文献   

18.
CbiX is a cobaltochelatase required for the biosynthesis of vitamin B12 and is found in Archaea as a short form (CbiXS containing 120-145 amino acids) and in some bacteria as a longer version (CbiXL containing 300-350 amino acids). Purification of either recombinant Bacillus megaterium or Synechocystis CbiXL in Escherichia coli, which is facilitated by the presence of a naturally occurring histidine-rich region of the protein, results in the isolation of a dark brown protein solution. The UV/visible spectrum of the protein is consistent with the presence of a redox group, and the lack of definition within the spectrum is suggestive of a 4Fe-4S center. The presence of an iron-sulfur center was confirmed by EPR analysis of the proteins, which produces a pseudoaxial spectrum with g values at 2.04, 1.94, and 1.90. The EPR spectrum was absent at 70 K, an observation that is diagnostic of a 4Fe-4S center. Redox potentiometry coupled with optical spectroscopy allowed the midpoint potential of the redox center to be determined for the CbiXL from both B. megaterium and Synechocystis. Sequence analysis of CbiXL proteins reveals only two conserved cysteine residues within the CbiXL proteins, which are part of an MXCXXC motif. Mutagenesis of the two cysteines leads to loss of both the EPR spectrum and UV/visible spectral features of the Fe-S center in the protein, clearly indicating that these residues are involved in ligating the cofactor to the apoprotein possibly in a butterfly arrangement. The potential physiological role of the iron-sulfur center is discussed.  相似文献   

19.
The polydisperse circular deoxyribonucleic acid (DNA) molecules which comprise up to 30% of the total extractable DNA of Bacillus megaterium strain 216 have been purified and partially characterized. Banding in cesium chlorideethidium bromide by "gradient relaxation" in a fixed-angle rotor provided good resolution of circular and chromosomal DNAs for preparative separations. Renaturation studies on purified circular DNA failed to reveal a rapidly renaturing fraction, and DNA-DNA hybridization studies indicated that the majority of the chromosomal nucleotide sequences are represented in the heterogeneous-size population of circular molecules. It is concluded that the circular DNA of B. megaterium does not represent typical bacterial plasmid DNA. The possibility that the circular DNA molecules are the result of the expression of a defective bacteriophage is discussed.  相似文献   

20.
《FEMS microbiology letters》1989,59(1-2):197-201
Abstract A gene encoding a 61 kDa entomocidal (P2) protein from Bacillus thuringiensis galleriae was cloned in Escherichia coli using oligonucleotide probes corresponding to N- and C-terminal DNA sequences of a Kurstaki P2 gene. When the gene of a 5.8 kb Hin dIII fragment was transformed into B. subtilis on a shuttle vector, sporulation was completely inhibited and expression could not be detected. When B. megaterium was transformed with the same plasmid, only 10% of the cells sporulated and a 61 kDa P2 protein which cross-reacted with kurstaki P2 antiserum was synthesised. Cell lysates of the transformed B. megaterium were found to be toxic to both lepidopteran and dipteran larvae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号