首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In general, calcium has been believed to control a variety of cellular processes as a signal transducer, with a high degree of spatial and temporal precision. For the determination of intracellular free-calcium concentrations [( Ca2+]i), the highly selective Ca2+ indicators, quin2/AM and fura2/AM, have been widely used in many mammalian and plant cells. However, intact cells of the cellular slime mold Dictyostelium discoideum Ax-2 are generally impermeable to externally added drugs, thus resulting in a failure to determine [Ca2+]i. Introduction of quin2/AM and fura2/AM by electroporation allowed us to measure [Ca2+]i in D. discoideum cells. The fluorescence images of fura2-loaded single cells showed that resting [Ca2+]i in vegetative and aggregation-competent cells is around 50 nM. Caffeine (10 mM) gave a transient increase in [Ca2+]i, which illustrated a normal responsive ability of electroporated cells to the externally added stimulus. Application of the chemoattractant, cAMP (20 nM), to aggregation-competent cells induced a rapid increase in [Ca2+]i within 1-2 s, and the [Ca2+]i level increased to about four-fold higher than the resting [Ca2+]i within 30 s of chemotactic stimulation. This was followed by a gradual decrease of [Ca2+]i to the basal level. These results strongly suggest that [Ca2+]i is a primary messenger in signal transduction, particularly during the chemotactic response of Dictyostelium cells.  相似文献   

2.
Loading of Ca2+-sensitive fluorescent probes into plant cells is an essential step to measuring activities of cytoplasmic free Ca2+ ions with a fluorescent imaging technique. A major barrier to the loading of the fluorescent probes into plant cells using the acetoxymethyl (AM) esters of the Ca2+-sensitive dyes is the presence of cell-wall associated esterases. These esterases hydrolyse the esterified form of the fluorescent probes, rendering the probes membrane-impermeable. A novel non-invasive loading protocol was described in this paper to load the Ca2+-sensitive fluorescent probe Fluo-3/AM ester into apical cells of intact wheat roots by incubating the roots in Fluo-3/AM ester solution at 4°C for 2 h followed by 2-h incubation in the dye-free solution at 20°C. The incubation at low temperature inhibited extracellular hydrolysis of Fluo-3/AM ester but had less effect on diffusion of membrane-permeable Fluo-3/AM ester across the plasma membrane, because hydrolysis of Fluo-3/AM ester by extracellular esterases is a chemical process (high Q10), while diffusion of Fluo-3/AM across the plasma membrane is a physical process (low Q10). The Fluo-3/AM ester, accumulated in the root cells during the low temperature incubation, was then cleaved by intracellular esterases during the incubation at 20°C, releasing the membrane-impermeable Ca2+-sensitive Fluo-3 in the cytoplasm. The root cells loaded with Fluo-3 showed strong intracellular fluorescence under confocal microscopy. The fluorescence from the root cells was sensitive to the Ca2+ ionophore and hydrogen peroxide, indicating that the intracellular fluorescence was due to intracellular Ca2+ ions.  相似文献   

3.
The loading of quin2 into oat protoplasts was carried out in an incubation medium (0.6 M sorbitol, 1 mM CaCl2, 5 mM Mes, 5 mM Tris, 0.05% BSA, 1 mM KCl, 1 mM MgSO4 (pH 6.8)), in which we found the best viability of the protoplast and the highest membrane permeability of quin2/AM, compared with the results obtained from any other incubation medium we had tried to use. 50 microns of quin2/AM was added in the suspension medium containing 5 x 10(5)/ml of oat protoplasts, and incubation at 4 degrees C was performed for 24 h. From atomic absorption data, we confirmed that quin2 loading was 1.78 mmol per liter of cells. Red-light (660 nm) irradiation for 5 min caused an increase of the cytosolic Ca2+ concentration from 30 to 193 nM. On the other hand, a subsequent irradiation with far-red light (730 nm) for 5 min decreased it by about 48 nM. Even when the extracellular Ca2+ was completely chelated with 1 mM EDTA, red light increased the cytosolic Ca2+ concentration by about 51 nM and far-red light decreased it to 3 nM. These results imply that the Pfr form of phytochrome functions not only in the process of influx of Ca2+, but also in the mobilization process of Ca2+ from the intracellular Ca2+ pools. The fact that the Pr form of phytochrome lowers the cytosolic Ca2+ concentration is also presented in this report.  相似文献   

4.
Using mouse macrophage cultures, the effects of verapamil and nifedipine on cholesterol ester metabolism were studied with special reference to the following parameters: i) incorporation of 14C-oleate into cholesterol esters (ChE), ii) contents of common and free cholesterol (FCh), iii) removal of 14C-oleate from ChE and incorporation of 3H-FCh into ChE and, iiii) excretion of 3H-Ch from the cells. Verapamil and nifedipine (10-100 microM) decreased the incorporation of 14C-oleate into ChE, increased the concentration of FCh but had no appreciable effect on the concentration of common Ch in macrophages cultured in the presence of acetylated low density lipoproteins. The drugs stimulated the removal of 14C-oleate from cellular ChE. The pharmacological concentrations (25-75 microM) of verapamil and nifedipine increased the excretion of 3H-Ch from ChE of macrophages in the presence of serum and high density lipoproteins. The results obtained suggest that verapamil and nifedipine mediate the antiatherosclerotic effect via reduction of intracellular synthesis of ChE, stimulation of ChE hydrolysis and cholesterol excretion from the cells.  相似文献   

5.
Fluo-3 is widely used to study cell calcium. Two traditional approaches: (1) direct injection and (2) Fluo-3 acetoxymethyl ester (AM) loading, often bring conflicting results in cytoplasmic calcium ([Ca2+]c) and nuclear calcium ([Ca2+]n) imaging. AM loading usually yields a darker nucleus than in cytoplasm, while direct injection always induces a brighter nucleus which is more responsive to [Ca2+]n detection. In this work, we detailedly investigated the effects of loading and de-esterification temperatures on the fluorescence intensity of Fluo-3 in response to [Ca2+]n and [Ca2+]c in adherent cells, including osteoblast, HeLa and BV2 cells. Interestingly, it showed that fluorescence intensity of nucleus in osteoblast cells was about two times larger than that of cytoplasm when cells were loaded with Fluo-3 AM at 4 °C and allowed a subsequent step for de-esterification at 20 °C. Brighter nuclei were also acquired in HeLa and BV2 cells using the same experimental condition. Furthermore, loading time and adhesion quality of cells had effect on fluorescence intensity. Taken together, cold loading and room temperature de-esterification treatment of Fluo-3 AM selectively yielded brighter nucleus in adherent cells.  相似文献   

6.
The effects of glucose on cytoplasmic free Ca2+ concentration, [Ca2+]i, and insulin release were investigated using pancreatic beta-cells isolated from obese hyperglycemic mice. Measurements of [Ca2+]i were performed in cell suspensions in a cuvette and in single cell-aggregates in a microscopic system, using fura 2 and quin 2. Insulin release was studied from indicator loaded cells in a column perifusion system. In the presence of 1.28 mM extracellular Ca2+, an increase in the glucose concentration from 0 to 20 mM had two major effects on [Ca2+]i. Initially there was a decrease, which was immediately followed by a pronounced increase. At reduced extracellular Ca2+, or when Ca2+ influx was blocked, glucose induced only a decrease in [Ca2+]i. With increasing intracellular concentrations of indicator, the effects of glucose on [Ca2+]i were markedly reduced. Changes in [Ca2+]i, similar effects being obtained in the cuvette and microfluorometric measurements, were paralleled by changes in insulin release. Insulin release from indicator loaded cells did not markedly differ from that of non-loaded controls, either with respect to rapidity or size in the response to the sugar. The addition of 20 mM glucose increased the efflux of fura 2, an effect that was not related to insulin release. Permeabilization of indicator loaded cells demonstrated a substantial amount of fura 2 bound intracellularly. Although the effects of glucose on [Ca2+]i seemed to be similar in fura 2 and quin 2 loaded cells, the demonstrated leakage and possible intracellular binding should be considered before using fura 2 for measurements in pancreatic beta-cells.  相似文献   

7.
We describe herein the effects of Marek's disease herpesvirus (MDV) on cholesterol and cholesteryl ester metabolism in cultured chicken arterial smooth muscle cells. Infection of arterial smooth muscle cells from specific pathogen-free chickens with MDV, but not a virus control, herpesvirus of turkeys led to a 7-10-fold increase in the accumulation of free and esterified cholesterol and a 2-fold increase in phospholipids. The cellular lipid changes observed in the MDV-infected arterial smooth muscle cells resulted, in part, from the following: decreased low-density lipoprotein-cholesteryl ester hydrolysis due to decreased lysosomal (acid) cholesteryl ester hydrolytic activity; increased de novo synthesis of cholesterol; decreased excretion of free cholesterol; and, both increased cholesteryl ester synthetic activity and decreased cytoplasmic (neutral) cholesteryl ester hydrolytic activity which resulted in increased incorporation of oleic acid into cholesteryl ester. Other changes noted in the MDV-infected cells as compared to uninfected cells included a 2-fold increase in both total protein synthesis and lysosomal and microsomal marker enzyme activities. These alterations in lipid and protein metabolism in MDV-infected arterial smooth muscle cells may explain in part our in vivo findings that herpesvirus (MDV) infection of specific pathogen-free chickens fed a normocholesterolemic diet will induce arterial thickening and lipid accumulation resembling human atherosclerosis.  相似文献   

8.
The increase of intracellular free calcium concentration ([Ca(2+)](i)) and protein kinase C (PKC) activity are two major early mitogenic signals to initiate proliferation of human peripheral T cells. Bacterial lipopolysaccharide (LPS) is nonmitogenic in human T cells. However, in the presence of monocytes, LPS becomes mitogenic to proliferate T cells. The aim of this study was to define the incompetency of LPS on two mitogenic signals in human peripheral T cells. T cells were isolated from human peripheral blood. [Ca(2+)](i) and pH(i) were determined by loading the cells with the fluorescent dyes, Fura-2 acetoxymethyl ester (Fura-2/AM) and 2',7'-bis(2-carboxyethyl)-5-(and 6)carboxyfluorescein acetoxymethyl ester (BCECF/AM). PKC activity was determined by protein kinase assay and cell proliferation was estimated from the incorporation of [(3)H]-thymidine. The results indicated that (1) LPS (10 microg/ml) stimulated PKC activity significantly within 5 min, reached a plateau at 30 min, and maintained that level for at least 2 h; and (2) LPS stimulated cytoplasmic alkalinization but did not affect the levels of [Ca(2+)](i) and [(3)H]-thymidine incorporation into T cells. Moreover, the combination of calcium ionophore A23187 with LPS significantly stimulated [(3)H]-thymidine incorporation into T cells. Thus, the results demonstrate that LPS failed to proliferate T cells, probably because of a lack of the machinery necessary to stimulate the mitogenic signal on [Ca(2+)](i) elevation.  相似文献   

9.
The proliferative peptide adrenomedullin (AM) has a wide distribution in a variety of tissues and cells. The mechanism how the AM gene is regulated in cells is not yet known. The renal cortex, renal vascular smooth muscles, glomeruli and tubular epithelial cells are very sensitive to hypoxia. Renal hypoxia produces acute renal tubular necrosis and markedly induces AM expression in damaged cells. However, little information is available regarding the possible pathophysiological production and release of renal tubular AM. Regulation of membrane-bound AM receptors in renal cells has not yet been systematically studied. To elucidate the potential pathological role of human AM we examined the production and release of AM, as well as the characteristics of surface membrane AM receptors in cultured monkey renal tubular epithelial cells (RC) exposed to hypoxia, induced with endothelin-1, and subjected to glucose deprivation. Exposure of RC to hypoxia (1 % O(2), 5 % CO(2) in N(2)), and to phorbol 12-myristate 13-acetate (PMA) increased production and secretion of AM and increased specific [(125)I]AM binding on RC. Metabolic stress (1 % glucose in the cultivation medium) and preincubation of RC with rival peptide endothelin-1 significantly reduced immunoreactive-AM in a conditioned medium and whole cell surface membrane AM binding on RC. Altogether, our data suggest that the AM is involved in the adaptation of renal tubular cells to hypoxia. Increased expression of AM mRNA and regulation of AM receptors in metabolic stress may function as an important autocrine/paracrine regulator(s) of renal tubular epithelial cells.  相似文献   

10.
It has been repeatedly shown that stimulation of a human leukemic T-cell line, JURKAT, by lectins such as phytohaemagglutinin and anti-T3 antibody (OKT3) leads to an elevation in the concentration of cytosolic free Ca2. This Ca2+ transient results from both an intracellular mobilization and an influx of Ca2+ through specific membrane channels. The objective of this study was to investigate the mechanism by which receptor-mediated influx of Ca2+ is regulated in JURKAT cells, which demonstrably lack 'voltage-dependent calcium channels'. It was found that upon increased loading with quin2 or 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetate (BAPTA) there was a pronounced decline of both phytohaemagglutinin-stimulated and OKT3-stimulated influx of 45Ca2+. Using 15 microM quin2/AM or 30 microM BAPTA/AM, agonist-stimulated 45Ca2+ influx was almost totally abolished. At these concentrations of both quin2/AM or BAPTA/AM, phytohaemagglutinin and OKT3 could still induce a rise of cytosolic free Ca2+ above 200 nM. In the presence of La3+ (200 microM), which completely inhibited the agonist-induced 45Ca2+ influx, both phytohaemagglutinin and OKT3 were able to raise the concentrations of cytosolic free Ca2+ to well above 200 nM by merely mobilizing Ca2+ from intracellular stores alone. The data suggest that an agonist-induced increase in the concentration of cytosolic free Ca2+, due to mobilization from intracellular stores, could either directly or indirectly, initiate receptor-mediated Ca2+ influx across the plasma membrane in JURKAT cells.  相似文献   

11.
G R Hart  K P Ray  M Wallis 《FEBS letters》1986,203(1):77-81
Intracellular free Ca2+ concentrations [Ca2+]i were measured in ovine anterior pituitary cells using the quin 2 technique. Thyrotropin-releasing hormone (TRH) increased, dopamine decreased and growth hormone-releasing hormone (GHRH) had no detectable effect on [Ca2+]i. Loading the cells with quin 2, at an intracellular concentration less than that used during calcium determination, reduced both basal growth hormone (GH) and (to a small extent) prolactin secretion. Loading cells with quin 2 also markedly reduced GHRH-stimulated GH secretion. However, TRH-stimulated prolactin secretion was 3-times basal irrespective of quin 2 loading. The results indicate that the use of quin 2 to measure [Ca2+]i in some cell types may be complicated by actions of quin 2 on cellular function.  相似文献   

12.
Acyl-CoA:cholesterol acyltransferase (ACAT) is an important enzyme in the pathways of cholesterol esterification. It has been shown that new ACAT inhibitor 1-(2,6-diisopropyl-phenyl)-3-[4-(4'-nitrophenylthio)phenyl] urea (VULM1457) significantly reduced atherogenic activity in animal experimental atherosclerosis. Proliferative hormone adrenomedullin (AM) has been shown to be released in response to hypoxia, however, its role in cellular protection has remained elusive. The effect of increased local production of AM in cells and resultant down-regulation of AM receptors has not been investigated yet. We hypothesized that increased expression of AM in hypoxic cells was the result of excessive AM production with resultant AM receptor down-regulation, surface-membrane protein degradation and that the new specific ACAT inhibitor would reduce AM induction in hypoxia and thus proliferation of cells. In order to investigate specific cellular AM signaling and protection induced by VULM1457, we characterized specific surface-membrane [125I]AM receptors expressed on cells, evaluated AM secretion (RIA assays), AM mRNA expression in cultured cells (RT-PCR analysis) and proliferation (incorporation of [3H]thymidine) in control, hypoxic and metabolically stressed human hepatoblastoma cell lines exposed to gradually increasing concentrations of VULM1457. The new ACAT inhibitor VULM1457 in concentration 0.03 and 0.1 micromol/l significantly down-regulated specific AM receptors on HepG2 cells, reduced AM secretion of HepG2 cells exposed to hypoxia. These results suggest that VULM1457, as new member of ACAT family of inhibitors could negatively regulate cell proliferation induced by AM, which may correlate with down-regulation of membrane-bound AM receptors on HepG2 cells, and moreover, with the induction and expression of AM in hypoxia.  相似文献   

13.
The effect of quin2 on chemotaxis by polymorphonuclear leukocytes   总被引:3,自引:0,他引:3  
Exposure of rabbit polymorphonuclear leukocytes to micromolar concentrations of quin2-AM results in high intracellular concentrations of quin2, which lead to inhibition of chemotaxis. The loading efficiency of polymorphonuclear leukocytes, being the percentage of quin2-AM which is taken up by the cells and transformed intracellularly into quin2, is very high, reaches a maximum after 30 min, is independent of the presence of extracellular Ca2+ and is fairly independent of cell concentration. As a consequence, inhibition of chemotaxis is strongly dependent on experimental conditions: with a low cell density (3 X 10(6)/ml) exposure to 20 microM quin2-AM results in complete inhibition of chemotaxis, whereas the same concentration of quin2-AM is nearly without effect when an 8-fold higher cell concentration is used. Inhibition by quin2 is dependent on extracellular Ca2+; inhibition is more pronounced in the absence of extracellular Ca2+ than in its presence. It is suggested that quin2 inhibits chemotaxis by interference with intracellular Ca2+.  相似文献   

14.
《The Journal of cell biology》1984,99(4):1212-1220
The intracellularly trapped fluorescent calcium indicator, quin 2, was used not only to monitor changes in cytosolic-free calcium, [Ca2+]i, but also to assess the role of [Ca2+]i in neutrophil function. To increase cytosolic calcium buffering, human neutrophils were loaded with various quin 2 concentrations, and [Ca2+]i transients, granule content release as well as superoxide [O2-] production were measured in response to the chemotactic peptide formyl-methionyl-leucyl- phenylalanine (fMLP) and the calcium ionophore ionomycin. Receptor- mediated cell activation induced by fMLP caused a rapid rise in [Ca2+]i. The extent of [Ca2+]i rise and granule release were inversely correlated with the intracellular concentration of quin 2, [quin 2]i. These effects of [quin 2]i were more pronounced in the absence of extracellular Ca2+. The initial rate and extent of fMLP-induced O2- production were also inhibited by [quin 2]i. The rates of increase of [Ca2+]i and granule release elicited by ionomycin were also inversely correlated with [quin 2]i in Ca2+-containing medium. As the effects of ionomycin, in contrast to those of fMLP, are sustained, the final increase in [Ca2+]i and granule release were not affected by [quin 2]i. A further reduction of fMLP effects was seen when intracellular calcium stores were depleted by incubating the cells in Ca2+-free medium with ionomycin. The specificity of quin 2 effects on cellular calcium were confirmed by loading the cells with Anis/AM, a structural analog of quin 2 with low affinity for calcium which did not inhibit granule release. In addition, functional responses to phorbol myristate acetate (PMA), which stimulates neutrophils without raising [Ca2+]i, were not affected by [quin 2]i. The findings indicate that rises in [Ca2+]i control the rate and extent of granule exocytosis and O2-generation in human neutrophils exposed to the chemotactic peptide fMLP.  相似文献   

15.
Nitrergic neurotransmission to gut smooth muscle is impaired in W/W(v) mutant mice, which lack intramuscular interstitial cells of Cajal (ICC-IM). In addition, these mice have been reported to have smaller amplitude unitary potentials (UPs) and a more negative resting membrane potential (RMP) than control mice. These abnormalities have been attributed to absence of ICC-IM, but it remains possible that they are due to alterations at the level of the smooth muscle itself. Amphotericin-B-perforated patch-clamp recordings and Ca(2+) imaging (fura 2) were compared between freshly isolated single circular smooth muscle cells (CSM) from W/W(v) mutant and control mice lower esophageal sphincter (LES). There was no significant difference in seal resistance, capacitance, or input resistance in response to applied electrotonic current pulses between CSM cells from W/W(v) mutants and controls. Compared with control mice, RMP was more negative and UPs significantly smaller in CSM cells from mutant mice LES. Administration of caffeine induced an inward current in cells from both mutant and control mice, but the current density was significantly larger in cells from W/W(v) mutants. Membrane potential hyperpolarization induced by sodium nitroprusside was larger in cells from control mice vs. W/W(v) mutants. In addition, intracellular Ca(2+) transients induced by caffeine were significantly increased in cells from mutants. These findings indicate that LES CSM is abnormal in W/W(v) mutant mice. Thus some physiological functions attributed to ICC-IM based on experiments in smooth muscle of ICC deficient mice may need to be reconsidered.  相似文献   

16.
We have investigated possible signaling pathways coupled to injury-induced ERK1/2 activation and the subsequent initiation of vascular rat smooth muscle cell migration and proliferation. Aortic smooth muscle cells were cultured to confluency and subjected to in vitro injury under serum-free conditions. In fluo-4-loaded cells, injury induced a rapid wave of intracellular Ca(2+) release that propagated about 200 microm in radius from the injured zone, reached a peak in about 20 s, and subsided to the baseline within 2 min. The wave was abolished by prior treatment with the sarcoplasmic reticulum ATPase inhibitor thapsigargin, but not by omission of extracellular Ca(2+). ERK1/2 activation reached a peak at 10 min after injury and was inhibited by the MEK1 inhibitor PD98059, as well as by thapsigargin, fluphenazine, genistein, and the Src inhibitor PP2. These inhibitors also reduced [(3)H]thymidine incorporation and migration of cells into the injured area determined at 48 h after injury. These results show that mechanical injury to vascular smooth muscle cells induces a Ca(2+) wave which is dependent on intracellular Ca(2+) release. Furthermore, the injury activates ERK1/2 phosphorylation as well as cell migration and replication.  相似文献   

17.
Using microfluorometry of quin 2, a Ca2+-sensitive dye, we characterized the release and uptake of Ca2+ by the norepinephrine-sensitive Ca2+-storage site and the caffeine-sensitive one. The norepinephrine-sensitive Ca2+-storage site was readily depleted in Ca2+-free medium and almost completely replenished by loading with 1.0 mM Ca2+ solution for 3 min, whereas the caffeine-sensitive site was scarcely affected. Furthermore, norepinephrine has little effect on the caffeine-sensitive Ca2+-storage site in Ca2+-free medium, and vice versa. We conclude that the location and mechanisms of release and uptake of Ca2+ of these two Ca2+-storage sites differ in the case of rat aortic vascular smooth muscle cells in primary culture.  相似文献   

18.
Regulation of adrenomedullin secretion from cultured cells.   总被引:6,自引:0,他引:6  
Y Tomoda  Y Isumi  T Katafuchi  N Minamino 《Peptides》2001,22(11):1783-1794
Characterization of immunoreactive adrenomedullin (AM) secreted from cultured human vascular smooth muscle cells and 7 other cells indicates that AM is synthesized and secreted from all cultured cells we surveyed. The secretion rate of AM measured ranges from 0.001-6.83 fmol/10(5) cells/h, and endothelial cells, vascular smooth muscle cells and fibroblasts generally secrete AM at high rates. Based on the results of regulation of AM secretion from vascular wall cells, fibroblasts, macrophages and other cells measured in this and previous studies, AM secretion is found to be generally stimulated by inflammatory cytokines, lipopolysaccharide (LPS) and hormones. Especially, vascular smooth muscle cells and fibroblasts elicited uniform and strong stimulatory responses of AM secretion to tumor necrosis factor (TNF), interleukin-1 (IL-1), LPS and glucocorticoid, but endothelial cells did not elicit such prominent responses. AM secretion of monocyte-macrophage was mainly regulated by the degree of differentiation into macrophage and activation by LPS and inflammatory cytokines including interferon-gamma. The other examined cells showed weaker responses to LPS and IL-1. Although cultured cells may have been transformed as compared with those in the tissue, these data indicate that AM is widely synthesized and secreted from most of the cells in the body and functions as a local factor regulating inflammation and related reactions in addition to as a potent vasodilator. The responses of AM secretion to LPS and inflammatory cytokines suggest that fibroblasts, vascular smooth muscle cells and macrophage are the major sources of AM in the septic shock.  相似文献   

19.
The effect of palmitic acid on basal and insulin-stimulated incorporation of glucose into rat adipocytes was studied. Palmitic acid (2.40 mM) stimulated basal as well as insulin-stimulated glucose incorporation in rat adipocytes three and twofold, respectively. Similar degrees of stimulation of basal glucose oxidation by palmitate were also observed. The ability of palmitic acid to stimulate glucose uptake was additive with respect to the stimulation induced by insulin and was proportional to the palmitic acid concentration between 0.15 mM and 2.40 mM. Stimulation of glucose incorporation by palmitic acid was inhibited by preincubating the cells with quin2-AM, which accumulates intracellularly yielding the trapped chelator form. quin2, which binds intracellular Ca2+.The concentration of quin2-AM required for half-maximal inhibition of palmitic acid stimulated glucose incorporation was 3.8 +/- 1.2 microM (mean +/- SEM). The inhibition of palmitic acid-stimulated glucose incorporation by quin2-AM (10 microM) was overcome by incubating cells with the Ca2+ ionophore, A23187, in the presence of extracellular Ca2+ (2.6 mM). Chelation of extracellular Ca2+ with EGTA did not significantly affect the magnitude of palmitic acid-stimulated glucose incorporation. Dantrolene (12.5-100 microM) failed to affect basal or palmitic acid-stimulated glucose incorporation. These findings suggest that palmitic acid stimulates incorporation of glucose in the adipocyte by a mechanism dependent upon intracellular but not extracellular Ca2+.  相似文献   

20.
Rat hearts were loaded with the fluorescent calcium indicators fura 2, indo 1, rhod 2, or fluo 3 to determine cytosolic calcium levels in the perfused rat heart. With fura 2, however, basal tissue fluorescence increased above anticipated levels, suggesting accumulation of intermediates of fura 2-AM deesterification. To examine this process, we separated the intermediates of the deesterification process using HPLC after incubation of fura 2-AM with tissue homogenates and after loading in the rat heart. Loading of hearts with fura 2-AM resulted in tissue levels of fura 2 free acid that were only 5% of the total heart dye content of all fura 2 species. The parent fura 2-AM form accumulated without accumulation of intermediate products. Similar results were obtained with indo 1-AM. Fluo 3 loaded very poorly in perfused hearts. Unlike other indictors, rhod 2 rapidly loaded in perfused hearts and was completely converted to the free acid form. To determine the subcellular localization of the free acid form of these indictors, mitochondria from indicator-loaded hearts were assayed for the free acid form. Approximately 75% of the total amount of rhod 2 in hearts could be recovered in isolated mitochondria. Subcellular localization of indo 1 and fura 2 was more evenly distributed between mitochondria and nonmitochondrial compartments. We conclude that measurement of calcium in the perfused rat heart using surface fluorescence with either indo 1 or fura 2 is complicated by an inconsistent accumulation of the parent ester and that the resulting signal cannot be easily calibrated using "in situ" methods using the free acid form. Rhod 2 does not display this shortcoming, but like other indicators, it also loads into the mitochondrial matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号