首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A bacterial strain was isolated from a Mumbai coastal area. It was dosed with anthracene and phenanthrene, and, after 14 days of incubation, it had degraded 90% and 93% of the anthracene and phenanthrene, respectively. The metabolites were extracted and identified by ultraviolet (UV)-visible light absorption, high-performance liquid chromatography, mass spectrometry, and by comparing with actual compounds and data. Neutral extracts from anthracene showed four metabolites, viz 1,2-dihydroxyanthracene, 6,7-benzocoumarin, 1-methoxy-2-hydroxyanthracene, and 9,10 anthraquinone. When Pseudomonas were grown in the presence of phenanthrene, two metabolites, viz 9,10-dihydroxyphenanthrene and 3,4-dihydroxyphenanthrene were identified.  相似文献   

2.
Arthrobacter citreus ATCC 11624 cleaved selectively only acetyl groups in the polyester alkaloid evonine, whilst the other two hydroxyl groups, esterified with dicarboxylic evonic acid, were retained in the isolated metabolite. Pentadeacetylevonine was identified as the sole product of this microbial transformation, which proceeds quantitatively within 4 days.  相似文献   

3.
Arthrobacter citreus ATCC 11624 cleaved selectively only acetyl groups in the polyester alkaloid evonine, whilst the other two hydroxyl groups, esterified with dicarboxylic evonic acid, were retained in the isolated metabolite. Pentadeacetylevonine was identified as the sole product of this microbial transformation, which proceeds quantitatively within 4 days.  相似文献   

4.
菲(Phenanthrene)是存在于煤焦油中,含三个苯环的稠环芳烃。除了具有"三致"作用外,菲稳定的化学结构和高辛醇-水分配系数等特性,使其具备较强的抗降解能力,易在环境中富集,破坏土壤微生态结构,降低农作物品质,威胁人类健康。而且随着化石燃料的长期大量使用,受菲污染的土地面积也急速增加,给人类的健康及生产活动带来极大的威胁。因此,有效清除土壤中菲及其他多环芳烃污染物,净化环境,具有重要的现实意义。微生物降解作为治理菲污染的方法之一,具有高效、低成本、环境友好的特点,受到研究者的高度重视。本文从菲降解菌的种类、降解机理、分子机制、影响修复等因素及微生物与植物联合修复五个方面进行综述,为进一步利用环境微生物,开发高效菲降解菌,治理菲污染提供参考。  相似文献   

5.
Five naphthalene- and salicylate-utilizing Pseudomonas putida strains cultivated for a long time on phenanthrene produced mutants capable of growing on this substrate and 1-hydroxy-2-naphthoate as the sole sources of carbon and energy. The mutants catabolize phenanthrene with the formation of 1-hydroxy-2-naphthoate, 2-hydroxy-1-naphthoate, salicylate, and catechol. The latter products are further metabolized by the meta- and ortho-cleavage pathways. In all five mutants, naphthalene and phenanthrene are utilized with the involvement of plasmid-born genes. The acquired ability of naphthalene-degrading strains to grow on phenanthrene is explained by the fact that the inducible character of the synthesis of naphthalene dioxygenase, the key enzyme of naphthalene and phenanthrene degradation, becomes constitutive.  相似文献   

6.
Anthracene, phenanthrene, and pyrene are polycyclic aromatic hydrocarbon (PAHs) that display both mutagenic and carcinogenic properties. They are recalcitrant to microbial degradation in soil and water due to their complex molecular structure and low solubility in water. This study presents the characterization of an efficient PAH (anthracene, phenanthrene, and pyrene)-degrading microbial consortium, isolated from a petrochemical sludge landfarming site. Soil samples collected at the landfarming area were used as inoculum in Warburg flasks containing soil spiked with 250 mg kg-1 of anthracene. The soil sample with the highest production of CO2-C in 176 days was used in liquid mineral medium for further enrichment of anthracene degraders. The microbial consortium degraded 48%, 67%, and 22% of the anthracene, phenanthrene, and pyrene in the mineral medium, respectively, after 30 days of incubation. Six bacteria, identified by 16S rRNA sequencing as Mycobacterium fortuitum, Bacillus cereus, Microbacterium sp., Gordonia polyisoprenivorans, two Microbacteriaceae bacteria, and a fungus identified as Fusarium oxysporum were isolated from the enrichment culture. The consortium and its monoculture isolates utilized a variety of hydrocarbons including PAHs (pyrene, anthracene, phenanthrene, and naftalene), monoaromatics hydrocarbons (benzene, ethylbenzene, toluene, and xylene), aliphatic hydrocarbons (1-decene, 1-octene, and hexane), hydrocarbon mixtures (gasoline and diesel oil), intermediary metabolites of PAHs degradation (catechol, gentisic acid, salicylic acid, and dihydroxybenzoic acid) and ethanol for growth. Biosurfactant production by the isolates was assessed by an emulsification index and reduction of the surface tension in the mineral medium. Significant emulsification was observed with the isolates, indicating production of high-molecular-weigh surfactants. The high PAH degradation rates, the wide spectrum of hydrocarbons utilization, and emulsification capacities of the microbial consortium and its member microbes indicate that they can be used for biotreatment and bioaugumentation of soils contaminated with PAHs.  相似文献   

7.
调查桃儿七根茎内生放线菌对鬼臼毒素的微生物转化,以期获得一些鬼臼毒素的结构类似物或衍生物。利用表面消毒法分离内生放线菌;采用薄层层析和高效液相色谱(HPLC)方法筛选转化鬼臼毒素的内生放线菌;利用硅胶柱层析和制备HPLC分离纯化生物转化产物;应用波谱技术解析转化产物的化学结构;通过形态学、生理生化特征和16S rRNA基因序列分析对内生放线菌进行初步鉴定。从桃儿七根茎中分离出20株内生放线菌,经筛选发现其中1株放线菌能转化鬼臼毒素,其产物为4’-去甲基表鬼臼毒素。初步鉴定该内生放线菌为Streptomyces sp.。内生放线菌Streptomyces sp.能对鬼臼毒素进行去甲基和异构化修饰,推测其可能具有O-去甲基化酶和异构化酶。  相似文献   

8.
Rhodococcus rubropertinctus N82 possesses unique regiospecific hydroxylation activity in biotransformation of compounds. In this study, the ability of whole cells of the strain R. rubropertinctus N82 in biotransformation was studied. The hydroxylation activity resulted in transforming 6,7-dihydro-4H-thieno[3,2-c]-pyridine-5-carboxylic acid tert-butyl ester (LS1) into 2-hydroxy-6,7-dihydro-4H-thieno[3,2-c]-pyridine-5-carboxylic acid tert-butyl ester (LP1), a pharmaceutical intermediate. By optimizing conditions for the hydroxylating biotransformation using whole cells of R. rubropertinctus N82 as biocatalyst, 3.3?mM LP1 was successfully produced from 4?mM LS1 with a molar yield of 83%. Thus, effective method was newly developed to produce LP1, which is a synthetic intermediate of a platelet inhibitor active pharmaceutical ingredient drug, prasugrel.  相似文献   

9.
The ability of three plant species (sweet corn, cucumber, and winged bean) to remediate soil spiked with 138.9 and 95.9 mg of anthracene and fluorene per kg of dry soil, respectively, by single and double plant co-cultivation was investigated. After 15 and 30 days of transplantation, plant elongation, plant weight, chlorophyll content, and the content of each PAH in soil and plant tissues were determined. Based on PAH removal and plant health, winged bean was the most effective plant for phytoremediation when grown alone; percentage of fluorene and anthracene remaining in the rhizospheric soil after 30 days were 7.8% and 24.2%, respectively. The most effective combination of plants for phytoremediation was corn and winged bean; on day 30, amounts of fluorene and anthracene remaining in the winged bean rhizospheric soil were 3.4% and 14.3%, respectively; amounts of fluorene and anthracene remaining in the sweet corn rhizospheric soil were 4.1% and 8.8%, respectively. Co-cultivation of sweet corn and cucumber could remove fluorene to a higher extent than anthracene from soil within 15 days, but these plants did not survive and died before day 30. The amounts of fluorene remaining in the rhizospheric soil of corn and cucumber were only 14% and 17.3%, respectively, on day 15. No PAHs were detected in plant tissues. This suggests that phytostimulation of microbial degradation in the rhizosphere was most likely the mechanism by which the PAHs were removed from the spiked soil. The results show that co-cultivation of plants has merit in the phytoremediation of PAH-spiked soil.  相似文献   

10.
Rhodococcus rhodochrous NCIMB 11216 grows on propionitrile or benzonitrile as the sole source of carbon and nitrogen. The possibility that different nitrile-hydrolyzing enzymes were produced under these two growth conditions was investigated. Nitrilase activity in whole cell suspensions from either bacteria grown on propionitrile or benzonitrile were capable of biotransforming a wide range of nitriles. The propionitrile-induced nitrile degrading activity hydrolyzed 3-cyanobenzoate and both the nitrile groups in 1,3-dicyanobenzoate. In contrast, the benzonitrile-induced activity hydrolyzed only one of the nitrile groups in 1,3-dicyanobenzoate, but did not affect 3-cyanobenzoate. Both nitrilases biotransformed -cyano-o-tolunitrile to produce 2-cyanophenylacetic acid. The nitrilases were purified by fast protein liquid chromatography and the -terminus of each enzyme sequenced. SDS-PAGE analysis identified a subunit molecular weight of 45.8 kDa for each nitrilase. The -terminal sequences showed significant similarity with other sequenced nitrilases and with the exception of a single amino acid were identical with each other. Both nitrilases had temperature and pH optima of 30°C and 8.0, respectively. The propionitrile-induced nitrilase had a Km for benzonitrile of 20.7 m and a Vmax of 12.4 μmol min−1 mg−1 protein whereas the benzonitrile-induced nitrilase had a Km for benzonitrile of 8.83 m and a Vmax of 0.57 μmol min−1 mg−1 protein.  相似文献   

11.
Aims:  The metabolism of phenanthrene and anthracene by a moderate thermophilic Nocardia otitidiscaviarum strain TSH1 was examined.
Methods and Results:  When strain TSH1 was grown in the presence of anthracene, four metabolites were identified as 1,2-dihydroxy-1,2-dihydroanthracene, 3-(2-carboxyvinyl)naphthalene-2-carboxylic acid, 2,3-dihydroxynaphthalene and benzoic acid using gas chromatography-mass spectrometry (GC-MS), reverse phase-high performance liquid chromatography (RP-HPLC) and thin-layer chromatography (TLC). Degradation studies with phenanthrene revealed 2,2'-diphenic acid, phthalic acid, 4-hydroxyphenylacetic acid, o -hydroxyphenylacetic acid, benzoic acid, a phenanthrene dihydrodiol, 4-[1-hydroxy(2-naphthyl)]-2-oxobut-3-enoic acid and 1-hydroxy-2-naphthoic acid (1H2NA), as detectable metabolites.
Conclusions:  Strain TSH1 initiates phenanthrene degradation via dioxygenation at the C-3 and C-4 or at C-9 and C-10 ring positions. Ortho -cleavage of the 9,10-diol leads to formation of 2,2'-diphenic acid. The 3,4-diol ring is cleaved to form 1H2NA which can subsequently be degraded through o -phthalic acid pathway. Benzoate does not fit in the previously published pathways from mesophiles. Anthracene metabolism seems to start with a dioxygenation at the 1 and 2 positions and ortho -cleavage of the resulting diol. The pathway proceeds probably through 2,3-dicarboxynaphthalene and 2,3-dihydroxynaphthalene. Degradation of 2,3-dihydroxynaphthalene to benzoate and transformation of the later to catechol is a possible route for the further degradation of anthracene.
Significance and Impact of the Study:  For the first time, metabolism of phenanthrene and anthracene in a thermophilic Nocardia strain was investigated.  相似文献   

12.
The phdABCD gene cluster in a marine bacterium Nocardioides sp. strain KP7 codes for the multicomponent enzyme phenanthrene dioxygenase. phdA encoding an iron-sulfur protein large subunit α, phdB encoding its small subunit β, phdC encoding ferredoxin, and phdD encoding ferredoxin reductase, were replaced in such a way that the termination codons of the preceding open reading frames were overlapped with the initiation codons of the following genes. This manipulated phdABCD gene cluster was positioned downstream of the thiostrepton-inducible promoter PtipA in a high-copy-number vector pIJ6021, and introduced into the gram-positive, soil-inhabiting, filamentous bacterium Streptomyces lividans. The recombinant S. lividans cells converted phenanthrene into a cis-diol form, which was determined to be cis-3,4-dihydroxy-3,4-dihydrophenanthrene by its UV spectral data as well as HPLC property, using the authentic sample for comparison. This biotransformation proceeded very efficiently; 200 μM and 2 mM of phenanthrene were almost completely converted to its cis-diol form in 6 h and 32 h, respectively. In addition, the S. lividans cells carrying the phdABCD gene cluster were found to transform 1-methoxynaphthalene to two products, which were identified to be 8-methoxy-2-naphthol in addition to 8-methoxy-1,2-dihydro-1,2-naphthalenediol by their EI-MS, 1H- and 13C-NMR spectral data.  相似文献   

13.
Arthrobacter phenanthrenivorans is the type species of the genus, and is able to metabolize phenanthrene as a sole source of carbon and energy. A. phenanthrenivorans is an aerobic, non-motile, and Gram-positive bacterium, exhibiting a rod-coccus growth cycle which was originally isolated from a creosote polluted site in Epirus, Greece. Here we describe the features of this organism, together with the complete genome sequence, and annotation.  相似文献   

14.
LAS对菲在土壤(柱)中的迁移影响   总被引:1,自引:0,他引:1  
随着环境科学发展,人们对多环芳烃化合物(PAHs)的研究越来越多[1]。以往对PAHs的研究主要是研究其在大气、水体、底泥中的分布及其分布和污染源距离的关系,而对PAHs在土壤中的迁移转化规律研究的较少[1]。我们在“七五”攻关课题中,曾研究过有机污染物在土壤、水、植物和大气中的存在状况,发现PAHs之一的菲在环境中有较高的检出[2]。本课题从环境条件对PAHs迁移过程的影响入手,重点研究在有表面活性剂(LAS)的条件下,菲在土壤中的迁移及其影响因素,为进一步研究其它有机污染物在土壤中的迁移规律及机理,丰富污染化学…  相似文献   

15.
Biocatalytic hydration of 3-methyl- or 3-ethyl-2-butenolide with resting cells of Rhodococcus rhodochrous ATCC 17895 gave the corresponding (R)-3-hydroxy-3-alkylbutanolide in moderate yield and with 95% e.e. © Rapid Science Ltd. 1998  相似文献   

16.
UV-B辐射和蒽对三角褐指藻DNA伤害的相互作用   总被引:24,自引:1,他引:24  
运用生态毒理学和生物化学的方法研究了紫外线和多环芳烃-蒽对三角褐指藻DNA的伤害作用,结果表明,蒽对三角褐指藻的生长有抑制作用;随着蒽浓度的增加,三角揭褐藻DNA损伤程度增加;在蒽浓度固定不变时,随着处理时间的延长,DNA的损伤程度同样提高;在蒽的处理过程中同时伴有紫外线的辐射处理,DNA的损伤程度加剧;蒽处理解除一段时间后,DNA损伤程度未明显减轻、而UV-B处理解除后,DNA的损伤可明显恢复,说明DNA的损伤可在一定程度上指示海洋微藻受蒽伤的程度。  相似文献   

17.
AIMS: To study the desulphurization of dibenzothiophene (DBT), a recalcitrant thiophenic component of fossil fuels, by two bacteria namely Rhodococcus sp. and Arthrobacter sulfureus isolated from oil-contaminated soil/sludge in order to use them for reducing the sulphur content of diesel oil in compliance with environmental regulations. METHODS AND RESULTS: The desulphurization pathway of DBT by the two bacteria was determined by gas chromatography (GC) and GC-mass spectrometry. Both organisms were found to produce 2-hydroxy biphenyl (2-HBP), the desulphurized product of DBT. Sulphur contents of culture supernatants of Rhodococcus sp. and A. sulfureus grown with DBT as sole sulphur source were analysed by X-ray fluorescence indicating sulphur levels of 8 and 10 ppm, respectively, as compared with 27 ppm in control. In order to study desulphurization of diesel oils obtained from an oil refinery, resting cell studies were carried out which showed a decrease of about 50% in sulphur content of the oil obtained from the hydrodesulphurization (HDS) unit of the refinery. CONCLUSIONS: Rhodococcus sp. and A. sulfureus selectively remove sulphur from DBT to form 2-HBP. Application of these bacteria for desulphurization of diesel showed promising potential for decreasing the sulphur content of diesel oil. SIGNIFICANCE AND IMPACT OF THE STUDY: The process of microbial desulphurization described herein can be used for significantly reducing the sulphur content of oil, particularly, after the process of HDS which would help in meeting the regulatory standards for sulphur level in diesel oil.  相似文献   

18.
The ability of biosurfactants and Acinetobacter calcoaceticus to enhance the emulsification and biodegradation of phenanthrene was investigated. Phenanthrene is a polycyclic aromatic hydrocarbon that may be derived from various sources, for example incomplete combustion of petroleum fuel, and thus it occurs ubiquitously throughout the environment. In order to assess the efficacy of a biosurfactant microparticle system, emulsification assays and in vitro biodegradation studies were conducted. Emulsification assays were carried out to assess the stability of phenanthrene emulsions. Emulsion stability was determined by the height of the emulsion layer (Emulsification Index) and turbidity. In vitro biodegradation tests were done to estimate phenanthrene degradation from an aqueous system by A. calcoaceticus supplemented with encapsulated (ERhBS) and nonencapsulated biosurfactants (NERhBS). Results show that phenanthrene emulsifications were stabilized after 48 h with NERhBS and remained stable for 72 additional hours. Phenanthrene emulsifications were stabilized with ERhBS after 216 h and remained stable for an additional 96 h. A. calcoaceticus alone and supplemented with rhamnolipid biosurfactant were able to biodegrade 10 to 50 mg L?1 of phenanthrene within 250 h. When supplemented with NERhBS, A. calcoaceticus degraded phenanthrene significantly faster than when nonsupplemented or supplemented with ERhBS. Addition of exogenous biosurfactants was considered to be a major factor driving the direct correlation between decreasing phenanthrene concentration in the system and increasing bacterial biomass.  相似文献   

19.
Galactose oxidase was purified from the culture supernatant of Gibberella fujikuroi by ammonium sulfate precipitation, chromatographies on DEAE-cellulose and hydroxylapatite, and gel filtration on Bio-Gel P-100. The purified enzyme had a molecular weight of 90,000 and an isoelectric point of pH 3.7, and contained about one atom of copper and about one atom of iron per mol of the enzyme protein. The enzyme was markedly inactivated by a copper-chelating agent, diethyldithiocarbamate, and reducing agents. The apoenzyme preparing on treatment of the enzyme with diethyldithiocarbamate could be reactivated only by the addition of either Cu+ or Cu2 +. These results indicate that copper is involved in galactose oxidase activity of G. fujikuroi.  相似文献   

20.
Characterization of functional and phylogenetic genes was carried out on a bacterial consortium, enriched from a water treatment system of an oilfield, that could use phenanthrene as the sole carbon source. The mixed culture degraded 130 mg phenanthrene l−1 in 16 days, which is significantly faster than previously reported pure cultures. The existence of catabolic genes (nahAc, C23O) in the mixed culture was quantitated by most probable number PCR. The plasmid encoding phenanthrene catabolic genes increased relative to the chromosome genes. Heterogeneous bacteria were present according to both PCR denaturing gradient gel electrophoresis and cloning methods, suggesting the possible existence of cooperation between different biochemical PAH-transforming pathways. Revisions requested 15 December 2005; Revisions received 23 January 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号