首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Escherichia coli RecG and RecA proteins in R-loop formation.   总被引:10,自引:2,他引:10       下载免费PDF全文
X Hong  G W Cadwell    T Kogoma 《The EMBO journal》1995,14(10):2385-2392
  相似文献   

3.
4.
5.
The initiation stage of ColE1-type plasmid replication was reconstituted with purified protein fractions from Escherichia coli. The reconstituted system included DNA polymerase I, DNA ligase, RNA polymerase, DNA gyrase, and a discriminating activity copurifying with RNAase H (but free of RNAase III). Initiation of DNA synthesis in the absence of RNAase H did not occur at the normal replication origin and was non-selective with respect to the plasmid template. In the presence of RNAase H the system was selective for ColE1-type plasmids and could not accept the DNA of non-amplifiable plasmids. Electron microscopic analysis of the reaction product formed under discriminatory conditions indicated that origin usage and directionally of ColE1, RSF1030, and CloDF13 replication were consistent with the normal replication pattern of these plasmids. It is proposed that the initiation of ColE1-type replication depends on the formation of an extensive secondary structure in the origin primer RNA that prevents its degradation by RNAase H.  相似文献   

6.
R-loops, which consist of a DNA/RNA hybrid and a displaced single-stranded DNA (ssDNA), are increasingly recognized as critical regulators of chromatin biology. R-loops are particularly enriched at gene promoters, where they play important roles in regulating gene expression. However, the molecular mechanisms that control promoter-associated R-loops remain unclear. The epigenetic ‘reader’ Tudor domain-containing protein 3 (TDRD3), which recognizes methylarginine marks on histones and on the C-terminal domain of RNA polymerase II, was previously shown to recruit DNA topoisomerase 3B (TOP3B) to relax negatively supercoiled DNA and prevent R-loop formation. Here, we further characterize the function of TDRD3 in R-loop metabolism and introduce the DExH-box helicase 9 (DHX9) as a novel interaction partner of the TDRD3/TOP3B complex. TDRD3 directly interacts with DHX9 via its Tudor domain. This interaction is important for recruiting DHX9 to target gene promoters, where it resolves R-loops in a helicase activity-dependent manner to facilitate gene expression. Additionally, TDRD3 also stimulates the helicase activity of DHX9. This stimulation relies on the OB-fold of TDRD3, which likely binds the ssDNA in the R-loop structure. Thus, DHX9 functions together with TOP3B to suppress promoter-associated R-loops. Collectively, these findings reveal new functions of TDRD3 and provide important mechanistic insights into the regulation of R-loop metabolism.  相似文献   

7.
S Takechi  H Matsui    T Itoh 《The EMBO journal》1995,14(20):5141-5147
Initiation of in vitro ColE2 DNA replication requires the plasmid-specified Rep protein and DNA polymerase I but not RNA polymerase and DnaG primase. The ColE2 Rep protein binds specifically to the origin where replication initiates. Leading-strand synthesis initiates at a unique site in the origin and lagging-strand DNA synthesis terminates at another unique site in the origin. Here we show that the primer RNA for leading-strand synthesis at the origin has a unique structure of 5'-ppApGpA. We reconstituted the initiation reaction of leading-strand DNA synthesis by using purified proteins, the ColE2 Rep protein, Escherichia coli DNA polymerase I and SSB, and we showed that the ColE2 Rep protein is a priming enzyme, primase, which is specific for the ColE2 origin. The ColE2 Rep protein is unique among other primases in that it recognizes the origin region and synthesizes the primer RNA at a fixed site in the origin region. Specific requirement for ADP as a substrate and its direct incorporation into the 5' end of the primer RNA are also unique properties of the ColE2 Rep protein.  相似文献   

8.
9.
10.
11.
Mutations affecting a region of the Escherichia coli RNA polymerase have been isolated that specifically reduce the copy number of ColE1-type plasmids. The mutations, which result in a single amino acid alteration (G1161R) or a 41-amino acid deletion (Delta1149-1190) are located near the 3'-terminal region in the rpoC gene, which encodes the largest subunit (beta ') of the RNA polymerase. The rpoC deletion and the point mutation cause over 20- and 10-fold reductions, respectively, in the copy number of ColE1. ColE1 plasmid numbers are regulated by two plasmid-encoded RNAs: RNA II, which acts as a preprimer for the DNA polymerase I to start initiation of replication, and RNA I, its antisense inhibitor. Altered expression from the RNA I and RNA II promoters in vivo was observed in the RNA polymerase mutants. The RNA I/RNA II ratio is higher in the mutants than in the wild-type strain and this is most probably the main reason for the reduction in the ColE1 copy number in the two rpoC mutants.  相似文献   

12.
Pathological replication in cells lacking RecG DNA translocase   总被引:1,自引:1,他引:0  
Little is known about what happens when forks meet to complete DNA replication in any organism. In this study we present data suggesting that the collision of replication forks is a potential threat to genomic stability. We demonstrate that Escherichia coli cells lacking RecG helicase suffer major defects in chromosome replication following UV irradiation, and that this is associated with high levels of DNA synthesis initiated independently of the initiator protein DnaA. This UV-induced stable DNA replication is dependent on PriA helicase and continues long after UV-induced lesions have been excised. We suggest UV irradiation triggers the assembly of new replication forks, leading to multiple fork collisions outside the terminus area. Such collisions may generate branched DNAs that serve to establish further new forks, resulting in uncontrolled DNA amplification. We propose that RecG reduces the likelihood of this pathological cascade being set in motion by reducing initiation of replication at D- and R-loops, and other structures generated as a result of fork collisions. Our results shed light on why replication initiation in bacteria is limited to a single origin and why termination is carefully orchestrated to a single event within a restricted area each cell cycle.  相似文献   

13.
The RecG protein of Escherichia coli is a structure-specific DNA helicase that targets strand exchange intermediates in genetic recombination and drives their branch migration along the DNA. Strains carrying null mutations in recG show reduced recombination and DNA repair. Suppressors of this phenotype, called srgA, were located close to metB and shown to be alleles of priA. Suppression depends on the RecA, RecBCD, RecF, RuvAB, and RuvC recombination proteins. Nine srgA mutations were sequenced and shown to specify mutant PriA proteins with single amino acid substitutions located in or close to one of the conserved helicase motifs. The mutant proteins retain the ability to catalyze primosome assembly, as judged by the viability of recG srgA and srgA strains and their ability to support replication of plasmids based on the ColE1 replicon. Multicopy priA+ plasmids increase substantially the recombination- and repair-deficient phenotype of recG strains and confer similar phenotypes on recG srgA double mutants but not on ruvAB or wild-type strains. The multicopy effect is eliminated by K230R, C446G, and C477G substitutions in PriA. It is concluded that the 3'-5' DNA helicase/translocase activity of PriA inhibits recombination and that this effect is normally countered by RecG.  相似文献   

14.
The UvsW protein of bacteriophage T4 is involved in many aspects of phage DNA metabolism, including repair, recombination, and recombination-dependent replication. UvsW has also been implicated in the repression of origin-dependent replication at late times of infection, when UvsW is normally synthesized. Two well-characterized T4 origins, ori(uvsY) and ori(34), are believed to initiate replication through an R-loop mechanism. Here we provide both in vivo and in vitro evidence that UvsW is an RNA-DNA helicase that catalyzes the dissociation of RNA from origin R-loops. Two-dimensional gel analyses show that the replicative intermediates formed at ori(uvsY) persist longer in a uvsW mutant infection than in a wild-type infection. In addition, the inappropriate early expression of UvsW protein results in the loss of these replicative intermediates. Using a synthetic origin R-loop, we also demonstrate that purified UvsW functions as a helicase that efficiently dissociates RNA from R-loops. These and previous results from a number of studies provide strong evidence that UvsW is a molecular switch that allows T4 replication to progress from a mode that initiates from R-loops at origins to a mode that initiates from D-loops formed by recombination proteins.  相似文献   

15.
16.
17.
潘学峰  姜楠  陈细芳  周晓宏  丁良  段斐 《遗传》2014,36(12):1185-1194
R-环是由一个RNA:DNA杂交体和一条单链状态的DNA分子共同组成的三链核酸结构。其中, RNA:DNA杂交体的形成起因于基因转录所合成的RNA分子不能与模板分开, 或RNA分子重新与一段双链DNA分子中的一条链杂交。在基因转录过程中, 当转录泡遇到富含G碱基的非模板链区或位于某些与人类疾病有关的三核苷酸卫星DNA时, 转录泡后方累积的负超螺旋可促进R环形成。同时, 新生RNA分子未被及时加工、成熟或未被快速转运到细胞质等因素也会催生R环。研究表明, 细胞拥有多种管理R环的方法, 可以有效地管理R环的形成和处理已经形成的R环, 以尽量避免R环对DNA复制、基因突变和同源重组产生不利影响。文章重点分析了R-环的形成机制及R环对DNA复制、基因突变和同源重组的影响, 并针对R-环诱导的DNA复制在某些三核苷酸重复扩增有关的神经肌肉退行性疾病发生过程中的作用进行了分析和讨论。  相似文献   

18.
19.
CRISPR (clustered regularly interspaced short palindromic repeat)/Cas (CRISPR-associated) is a nucleic acid processing system in bacteria and archaea that interacts with mobile genetic elements. CRISPR DNA and RNA sequences are processed by Cas proteins: in Escherichia coli K-12, one CRISPR locus links to eight cas genes (cas1, 2, 3 and casABCDE), whose protein products promote protection against phage. In the present paper, we report that purified E. coli Cas3 catalyses ATP-independent annealing of RNA with DNA forming R-loops, hybrids of RNA base-paired into duplex DNA. ATP abolishes Cas3 R-loop formation and instead powers Cas3 helicase unwinding of the invading RNA strand of a model R-loop substrate. R-loop formation by Cas3 requires magnesium as a co-factor and is inactivated by mutagenesis of a conserved amino acid motif. Cells expressing the mutant Cas3 protein are more sensitive to plaque formation by the phage λvir. A complex of CasABCDE ('Cascade') also promotes R-loop formation and we discuss possible overlapping roles of Cas3 and Cascade in E. coli, and the apparently antagonistic roles of Cas3 catalysing RNA-DNA annealing and ATP-dependent helicase unwinding.  相似文献   

20.
CRISPR-Cas is a prokaryotic immune system built from capture and integration of invader DNA into CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) loci, termed ‘Adaptation’, which is dependent on Cas1 and Cas2 proteins. In Escherichia coli, Cascade-Cas3 degrades invader DNA to effect immunity, termed ‘Interference’. Adaptation can interact with interference (‘primed’), or is independent of it (‘naïve’). We demonstrate that primed adaptation requires the RecG helicase and PriA protein to be present. Genetic analysis of mutant phenotypes suggests that RecG is needed to dissipate R-loops at blocked replication forks. Additionally, we identify that DNA polymerase I is important for both primed and naive adaptation, and that RecB is needed for naïve adaptation. Purified Cas1-Cas2 protein shows specificity for binding to and nicking forked DNA within single strand gaps, and collapsing forks into DNA duplexes. The data suggest that different genome stability systems interact with primed or naïve adaptation when responding to blocked or collapsed invader DNA replication. In this model, RecG and Cas3 proteins respond to invader DNA replication forks that are blocked by Cascade interference, enabling DNA capture. RecBCD targets DNA ends at collapsed forks, enabling DNA capture without interference. DNA polymerase I is proposed to fill DNA gaps during spacer integration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号