首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A theoretical explanation of the experimentally observed characteristic thermal anomalies in the specific heat of lipid bilayers containing cholesterol is provided in terms of the phase equilibria in the phosphatidylcholine-cholesterol system. The phase equilibria are calculated via a microscopic interaction model that takes proper account of both the conformational and the crystalline degrees of freedom of the lipid acyl chains. It is shown that the characteristic double-peaked specific heat, with a narrow and a broad component, is a natural consequence of the topology of the phase diagram. Some results for the enthalpy of the mixed system are also reported. It is suggested that there is no need for invoking special mechanisms such as lipid-cholesterol complexing or formation of special interfacial regions in the bilayer in order to explain the specific-heat anomalies.  相似文献   

2.
Direct measurement of the partition coefficient of n-hexane into phosphatidylcholine and phosphatidylcholine-cholesterol bilayers showed that (a) isotropic liquids are not good models for lipid bilayers and (b), Regular Solution Theory cannot, in general, be applied to lipid bilayer membranes at temperatures above their phase transition. Theoretical and experimental evidence is given.  相似文献   

3.
It is shown that good estimates of the activity of cholesterol in phosphatidylcholine-cholesterol mixed model membranes are obtained by examining the orientational order parameter S of cholestane spin probe (CSL) that is obtained from electron spin resonance by spectral simulation. By introducing thermodynamic stability conditions of liquid mixtures, the variation of activity (or S) as a function of cholesterol mole fraction is utilized to predict the concentration at which the phase separation occurs. These results for DMPC and cholesterol binary mixtures agree very well with those of Tempo-partitioning experiments. The comparison of activity coefficients and the phase boundary in DMPC/cholesterol mixtures with those of POPC/cholesterol mixtures suggests that acyl chain unsaturation leads to poorer mixing of cholesterol in phosphatidylcholine model membranes at higher temperatures (i.e., greater than 35 degrees C). In ternary solutions of DMPC, POPC, and cholesterol, it is found that cholesterol shows less deviation from ideality than in either of the two binary mixtures, and this implies that the phase separation occurs at higher cholesterol concentration than in either of the two binary mixtures. The present analysis suggests that there may not be a critical point in DMPC/cholesterol mixtures, even though phase separation does occur.  相似文献   

4.
Phosphatidylcholine: cholesterol phase diagrams   总被引:8,自引:7,他引:1       下载免费PDF全文
Two mono-cis-unsaturated phosphatidylcholine (PC) lipid molecules, having very different gel-liquid crystalline phase transition temperatures as a consequence of the relative positions of the double bond, exhibit PC:cholesterol phase diagrams that are very similar to each other and to that obtained previously for a fully saturated PC:cholesterol mixture (Vist, M. R., and J. H. Davis. 1990. Biochemistry 29:451-464). This leads to the conjecture that PC:cholesterol membrane phase diagrams have a universal form which is relatively independent of the precise chemical structure of the PC molecule. One feature of this phase diagram is the observation over a wide temperature range of a fluid but highly conformationally ordered phase at bilayer concentrations of more than ~25 mol% cholesterol. This `liquid ordered' phase is postulated to be the relevant physical state for many biological membranes, such as the plasma membrane of eukaryotic cells, that contain substantial amounts of cholesterol or equivalent sterols.  相似文献   

5.
The association of ethanol with unilamellar dimyristoyl phosphatidylcholine (DMPC) liposomes of varying cholesterol content has been investigated by isothermal titration calorimetry over a wide temperature range (8-45 degrees C). The calorimetric data show that the interaction of ethanol with the lipid membranes is endothermic and strongly dependent on the phase behavior of the mixed lipid bilayer, specifically whether the lipid bilayer is in the solid ordered (so), liquid disordered (ld), or liquid ordered (lo) phase. In the low concentration regime (<10 mol%), cholesterol enhances the affinity of ethanol for the lipid bilayer compared to pure DMPC bilayers, whereas higher levels of cholesterol (>10 mol%) reduce affinity of ethanol for the lipid bilayer. Moreover, the experimental data reveal that the affinity of ethanol for the DMPC bilayers containing small amounts of cholesterol is enhanced in the region around the main phase transition. The results suggest the existence of a close relationship between the physical structure of the lipid bilayer and the association of ethanol with the bilayer. In particular, the existence of dynamically coexisting domains of gel and fluid lipids in the transition temperature region may play an important role for association of ethanol with the lipid bilayers. Finally, the relation between cholesterol content and the affinity of ethanol for the lipid bilayer provides some support for the in vivo observation that cholesterol acts as a natural antagonist against alcohol intoxication.  相似文献   

6.
We have studied the effects of cholesterol on membrane surfaces using fluorescence spectroscopy at high pressure. At atmospheric pressure, the dissociation state of a pH-sensitive fluorophore (6-decanylnaphthol or DECNA) incorporated into several types of membranes showed an apparent increase in dissociation with cholesterol content coming somewhat closer to its dissociation state in solution. Previous studies have shown that when DECNA is free in solution, pressure induces proton dissociation due to the volume decrease that occurs when water electrostricts around the ions. But in phosphatidylcholine (PC) bilayers, proton dissociation is inhibited, either due to the inability of the surface to expand and allow for increased hydration, or other changes in lipid structure. The pressure behavior of DECNA in dioleoyl-PC, dioleoylphosphatidic acid and dioleylphosphatidylglycerol bilayers shows that incorporation of 5-10% cholesterol causes DECNA to behave like it is in a more unrestricted environment. This trend is reversed at higher cholesterol concentrations. These data, together with compressibility measurements, support the model of Sankaram and Thompson [M. Sankaram, T.E. Thompson, Biochemistry 29 (1990) 10676.] whereby in the disordered phase, cholesterol can span the two leaflets causing an increase in the area between the head groups; whereas in the ordered phase, no expansion occurs. Thus, the effect of cholesterol on membrane surfaces depends on its phase diagram.  相似文献   

7.
The effect of cholesterol on the structure of phosphatidylcholine bilayers was investigated by X-ray diffraction methods. Electron density profiles at 5 Å resolution along with chain tilt and chain packing parameters were obtained and compared for phosphatidylcholine/cholesterol bilayers and for pure phosphatidylcholine bilayers in both the gel and liquid crystalline states. The cholesterol in the bilayer was localized by noting the position of discrete elevations in the electron density profiles. Cholesterol can either increase or decrease the width of the bilayer depending on the physical state and chain length of the lipid before the introduction of cholesterol. For saturated phosphatidylcholines containing 12–16 carbons per chain, cholesterol increases the width of the bilayer as it removes the chain tilt from gel state lipids or increases the trans conformations of the chains for liquid crystalline lipids. However, cholesterol reduces the width of 18 carbon chain bilayers below the phase transition temperature as the long phospholipid chains must deform or kink to accomodate the significantly shorter cholesterol molecule. Although cholesterol has a marked effect on hydrocarbon chain organization, it was found that, within the resolution limits of the data, the phosphatidylcholine head group conformation is unchanged by the addition of cholesterol to the bilayer. The head group is oriented parallel to the plane of the bilayer for phosphatidylcholine in the gel and liquid crystalline states and this orientation is not changed by the addition of cholesterol.  相似文献   

8.
Diverse variations in membrane properties are observed in binary phosphatidylcholine/cholesterol mixtures. These mixtures are nonideal, displaying single or phase coexistence, depending on chemical composition and other thermodynamic parameters. When compared with pure phospholipid bilayers, there are changes in water permeability, bilayer thickness and thermomechanical properties, molecular packing and conformational freedom of phospholipid acyl chains, in internal dipolar potential and in lipid lateral diffusion. Based on the phase diagrams for DMPC/cholesterol and DPPC/cholesterol, we compare the equivalent polarity of pure bilayers with specific compositions of these mixtures, by using the Py empirical scale of polarity. Besides the contrast between pure and mixed lipid bilayers, we find that liquid-ordered (l(o)) and liquid-disordered (l(d)) phases display significantly different polarities. Moreover, in the l(o) phase, the polarities of bilayers and their thermal dependences vary with the chemical composition, showing noteworthy differences for cholesterol proportions at 35, 40, and 45 mol%. At 20 degrees C, for DMPC/cholesterol at 35 and 45 mol%, the equivalent dielectric constants are 21.8 and 23.8, respectively. Additionally, we illustrate potential implications of polarity in various membrane-based processes and reactions, proposing that for cholesterol containing bilayers, it may also go along with the occurrence of lateral heterogeneity in biological membranes.  相似文献   

9.
Cholesterol in human bile is solubilized in micelles by (relatively hydrophobic) bile salts and phosphatidylcholine (unsaturated acyl chains at sn-2 position). Hydrophilic tauroursodeoxycholate, dipalmitoyl phosphatidylcholine, and sphingomyelin all decrease cholesterol crystal-containing zones in the equilibrium ternary phase diagram (van Erpecum, K. J., and M. C. Carey. 1997. Biochim. Biophys. Acta. 1345: 269-282) and thus could be valuable in gallstone prevention. We have now compared crystallization in cholesterol-supersaturated model systems (3.6 g/dl, 37 degrees C) composed of various bile salts as well as egg yolk phosphatidylcholine (unsaturated acyl chains at sn-2 position), dipalmitoyl phosphatidylcholine, or sphingomyelin throughout the phase diagram. At low phospholipid contents [left two-phase (micelle plus crystal-containing) zone], tauroursodeoxycholate, dipalmitoyl phosphatidylcholine, and sphingomyelin all enhanced crystallization. At pathophysiologically relevant intermediate phospholipid contents [central three-phase (micelle plus vesicle plus crystal-containing) zone], tauroursodeoxycholate inhibited, but dipalmitoyl phosphatidylcholine and sphingomyelin enhanced, crystallization. Also, during 10 days of incubation, there was a strong decrease in vesicular cholesterol contents and vesicular cholesterol-to-phospholipid ratios (approximately 1 on day 10), coinciding with a strong increase in crystal mass. At high phospholipid contents [right two-phase (micelle plus vesicle-containing) zone], vesicles were always unsaturated and crystallization did not occur. Strategies aiming to increase amounts of hydrophilic bile salts may be preferable to increasing saturated phospholipids in bile, because the latter may enhance crystallization.  相似文献   

10.
Molecular dynamics (MD) computer simulations of five different hydrated unsaturated phosphatidylcholine lipid bilayers built up by 18:0/18:1(n-9)cis PC, 18:0/18:2(n-6)cis PC, 18:0/18:3(n-3)cis PC, 18:0/20:4(n-6)cis PC, and 18:0/22:6(n-3)cis PC molecules with 40 mol% cholesterol, and the same five pure phosphatidylcholine bilayers have been performed at 303 K. The simulation box of a lipid bilayer contained 96 phosphatidylcholines, 64 cholesterols, and 3840 water molecules (48 phosphatidylcholine molecules and 32 cholesterols per layer and 24 water molecules per phospholipid or cholesterol in each case). The lateral self-diffusion coefficients of the lipids in these systems and mass density profiles with respect to the bilayer normal have been analyzed. It has been found that the lateral diffusion coefficients of phosphatidylcholine molecules increase with increasing number of double bonds in one of the lipid chains, both in pure bilayers and in bilayers with cholesterol. It has been found as well that the lateral diffusion coefficient of phosphatidylcholine molecules of a lipid bilayer with 40 mol% cholesterol is smaller than that for the corresponding pure phosphatidylcholine bilayer.  相似文献   

11.
Crane JM  Tamm LK 《Biophysical journal》2004,86(5):2965-2979
Sterols play a crucial regulatory and structural role in the lateral organization of eukaryotic cell membranes. Cholesterol has been connected to the possible formation of ordered lipid domains (rafts) in mammalian cell membranes. Lipid rafts are composed of lipids in the liquid-ordered (l(o)) phase and are surrounded with lipids in the liquid-disordered (l(d)) phase. Cholesterol and sphingomyelin are thought to be the principal components of lipid rafts in cell and model membranes. We have used fluorescence microscopy and fluorescence recovery after photobleaching in planar supported lipid bilayers composed of porcine brain phosphatidylcholine (bPC), porcine brain sphingomyelin (bSM), and cholesterol to map the composition-dependence of l(d)/l(o) phase coexistence. Cholesterol decreases the fluidity of bPC bilayers, but disrupts the highly ordered gel phase of bSM, leading to a more fluid membrane. When mixed with bPC/bSM (1:1) or bPC/bSM (2:1), cholesterol induces the formation of l(o) phase domains. The fraction of the membrane in the l(o) phase was found to be directly proportional to the cholesterol concentration in both phospholipid mixtures, which implies that a significant fraction of bPC cosegregates into l(o) phase domains. Images reveal a percolation threshold, i.e., the point where rafts become connected and fluid domains disconnected, when 45-50% of the total membrane is converted to the l(o) phase. This happens between 20 and 25 mol % cholesterol in 1:1 bPC/bSM bilayers and between 25 and 30 mol % cholesterol in 2:1 bPC/bSM bilayers at room temperature, and at approximately 35 mol % cholesterol in 1:1 bPC/bSM bilayers at 37 degrees C. Area fractions of l(o) phase lipids obtained in multilamellar liposomes by a fluorescence resonance energy transfer method confirm and support the results obtained in planar lipid bilayers.  相似文献   

12.
In the present work, we demonstrate that phosphatidylcholine with (16:1)9 acyl chains undergoes polymorphic rearrangements in mixtures with 0.6-0.8 mol fraction cholesterol. Studies were performed using differential scanning calorimetry, X-ray diffraction, cryo-electron microscopy, 31P NMR static powder patterns and 13C MAS/NMR. Mixtures of phosphatidylcholine with (16:1)9 acyl chains and 0.6 mol fraction cholesterol, after being heated to 100 degrees C, can form an ordered array with periodicity 14 nm which may be indicative of a cubic phase. Our results indicate that the formation of highly curved bilayer structures, such as those required for membrane fusion, can occur in mixtures of cholesterol with certain phosphatidylcholines that do not form non-lamellar structures in the absence of cholesterol. We also determine the polymorphic behavior of mixtures of symmetric phosphatidylcholines with cholesterol. Species of phosphatidylcholine with (20:1)11, (22:1)13 or (24:1)15 acyl chains in mixtures with 0.6-0.8 mol fraction cholesterol undergo a transition to the hexagonal phase at temperatures 70-80 degrees C. This is not the case for phosphatidylcholine with (18:1)6 acyl chains which remains in the lamellar phase up to 100 degrees C when mixed with as much as 0.8 mol fraction cholesterol. Thus, the polymorphic behavior of mixtures of phosphatidylcholine and cholesterol is not uncommon and is dependent on the intrinsic curvature of the phospholipid. Crystals of cholesterol can be detected in mixtures of all of these phosphatidylcholines at sufficiently high cholesterol mole fraction. What is unusual about the formation of these crystals in several cases is that cholesterol crystals are present in the monohydrate form in preference to the anhydrous form. Furthermore, after heating to 100 degrees C and recooling, the cholesterol crystals are again observed to be in the monohydrate form, although pure cholesterol crystals require many hours to rehydrate after being heated to 100 degrees C. Both the nature of the acyl chain as well as the mole fraction cholesterol determine whether cholesterol crystals in mixtures with the phospholipids will be in the monohydrate or in the anhydrous form.  相似文献   

13.
The pulsed field gradient (pfg)-NMR method for measurements of translational diffusion of molecules in macroscopically aligned lipid bilayers is described. This technique is proposed to have an appreciable potential for investigations in the field of lipid and membrane biology. Transport of molecules in the plane of the bilayer can be successfully studied, as well as lateral phase separation of lipids and their dynamics within the bilayer organizations. Lateral diffusion coefficients depend on lipid packing and acyl chain ordering and investigations of order parameters of perdeuterated acyl chains, using (2)H NMR quadrupole splittings, are useful complements. In this review we summarize some of our recent achievements obtained on lipid membranes. In particular, bilayers exhibiting two-phase coexistence of liquid disordered (l(d)) and liquid ordered (l(o)) phases are considered in detail. Methods for obtaining good oriented lipid bilayers, necessary for the pfg-NMR method to be efficiently used, are also briefly described. Among our major results, besides determinations of l(d) and l(o) phases, belongs the finding that the lateral diffusion is the same for all components, independent of the molecular structure (including cholesterol (CHOL)), if they reside in the same domain or phase in the membrane. Furthermore, quite unexpectedly CHOL seems to partition into the l(d)and l(o) phases to roughly the same extent, indicating that CHOL has no strong preference for any of these phases, i.e. CHOL seems to have similar interactions with all of the lipids. We propose that the lateral phase separation in bilayers containing one high-T(m) and one low-T(m) lipid together with CHOL is driven by the increasing difficulty of incorporating an unsaturated or prenyl lipid into the highly ordered bilayer formed by a saturated lipid and CHOL, i.e. the phase transition is entropy driven to keep the disorder of the hydrocarbon chains of the unsaturated lipid.  相似文献   

14.
By means of the scanning differential calorimetry, x-ray diffractometry, and the dynamic light scattering, we have systematically studied the phase and packing properties of dipalmitoylphosphatidylcholine vesicles or multibilayers in the presence of ethanol. We have also determined the partial ternary phase diagram of such dipalmitoylphosphatidylcholine/water/ethanol mixtures. The directly measured variability of the structural bilayer parameters implies that ethanol binding to the phospholipid bilayers increases the lateral as well as the transverse repulsion between the lipid molecules. This enlarges the hydrocarbon tilt (by up to 23 degrees) and molecular area (by < or = 40%). Ethanol-phospholid association also broadens the interface and, thus, promotes lipid headgroup solvation. This results in excessive swelling (by 130%) of the phosphatidylcholine bilayers in aqueous ethanol solutions. Lateral bilayer expansion, moreover, provokes a successive interdigitation of the hydrocarbon chains in the systems with bulk ethanol concentrations of 0.4-1.2 M. The hydrocarbon packing density as well as the propensity for the formation of lamellar gel phases simultaneously increase. The pretransition temperature of phosphatidylcholine bilayers is more sensitive to the addition of alcohol (initial shift: delta Tp = 22 degrees C/mol) than the subtransition temperature (delta Ts reversible 5 degrees C/mol), whereas the chain-melting phase transition temperature is even less affected (delta Tm = 1.8 degrees C/mol). After an initial decrease of 3 degrees for the bulk ethanol concentrations below 1.2 M, the Tm value increases by 2.5 degrees above this limiting concentration. The gel-phase phosphatidylcholine membranes below Tm are fully interdigitated above this limiting concentration. The chain tilt on the fringe of full chain interdigitation is zero and increases with higher ethanol concentrations. Above Tm, some of the lipid molecules are solubilized by the bound ethanol molecules. More highly concentrated ethanol solutions (> 7 M) solubilize the phosphatidylcholine bilayers with fluid chains fully and result in the formation of mixed lipid-alcohol micelles.  相似文献   

15.
Diverse variations in membrane properties are observed in binary phosphatidylcholine/cholesterol mixtures. These mixtures are nonideal, displaying single or phase coexistence, depending on chemical composition and other thermodynamic parameters. When compared with pure phospholipid bilayers, there are changes in water permeability, bilayer thickness and thermomechanical properties, molecular packing and conformational freedom of phospholipid acyl chains, in internal dipolar potential and in lipid lateral diffusion. Based on the phase diagrams for DMPC/cholesterol and DPPC/cholesterol, we compare the equivalent polarity of pure bilayers with specific compositions of these mixtures, by using the Py empirical scale of polarity. Besides the contrast between pure and mixed lipid bilayers, we find that liquid-ordered (?o) and liquid-disordered (?d) phases display significantly different polarities. Moreover, in the ?o phase, the polarities of bilayers and their thermal dependences vary with the chemical composition, showing noteworthy differences for cholesterol proportions at 35, 40, and 45 mol%. At 20 °C, for DMPC/cholesterol at 35 and 45 mol%, the equivalent dielectric constants are 21.8 and 23.8, respectively. Additionally, we illustrate potential implications of polarity in various membrane-based processes and reactions, proposing that for cholesterol containing bilayers, it may also go along with the occurrence of lateral heterogeneity in biological membranes.  相似文献   

16.
13C-NMR and permeability studies are described for sonicated vesicles of phosphatidylcholines bearing two 16-carbon saturated hydrocarbon chains with (a) one ether linkage at carbon 1 (3) or 2 of glycerol and one ester linkage at carbon 2 or 1 (3) of glycerol; (b) two ether linkages and (c) two ester linkages at carbons 1 (3) and 2 of glycerol. The results of 13C-NMR relaxation enhancement measurements using cholesterol enriched with 13C at the 4 position indicate that no significant relocation of the cholesterol molecules takes place in the bilayer when a methylene group is substituted for a carbonyl group in phosphatidylcholine. The 4-13C atom of cholesterol undergoes similar fast anisotropic motions in diester- and diether -phosphatidylcholine bilayers, as judged by spin-lattice relaxation time measurements in the liquid-crystalline phase; although the fast motions are unaltered, linewidth and spin-spin relaxation time measurements suggested some restriction of the slow motions of cholesterol molecules in bilayers from phosphatidylcholines containing an O-alkyl linkage at the sn-2 position instead of an acyl linkage. At temperatures above the gel to liquid-crystal phase transition, the kinetics of ionophore A23187-mediated 45Ca2+ efflux from vesicles prepared from each type of phosphatidylcholine molecule were the same; the kinetics of spontaneous carboxyfluorescein diffusion from diester- and diether -phosphatidylcholine vesicles were the same, whereas mixed ether/ester phosphatidylcholine molecules gave bilayers which are less permeable. The rate constants were reduced on cholesterol incorporation into the bilayers of each type of phosphatidylcholine molecule. The reductions were not statistically significant for 45Ca2+ release. The rate constants for carboxyfluorescein release were also reduced by cholesterol to the same extent in vesicles from diester-, diether -, and 1-ether, and 1-ether-2-ester-phosphatidylcholines; however, a smaller reduction was noted in bilayers from the 1-ester-2-ether analog. The results provide further evidence that there are no highly specific requirements for ester or ether linkages in phosphatidylcholine for cholesterol to reduce bilayer permeability. This is a reflection of the fact that in both diester- and diether -phosphatidylcholine bilayers, the 4-13C atom of cholesterol is located in the region of the acyl carboxyl group or the glyceryl ether oxygen atom.  相似文献   

17.
Raman and infrared spectra of fully hydrated bilayers of 1,2-dioleoyl phosphatidylcholine (DOPC) were measured at increasing hydrostatic pressures up to -37 kbar. Under ambient conditions aqueous dispersions of DOPC are in the liquid crystalline state. The application of an external hydrostatic pressure induces conformational and dynamic ordering processes in DOPC, which trigger a first-order structural phase transition at 5 kbar from a disordered liquid crystalline state to a highly ordered gel state. In the gel phase the methylene chains of each molecule are fully extended and the two all-trans chain segments on both sides of the rigid cis double bond form a bent structure. The bent oleoyl chains in each molecule, as well as in neighboring molecules are packed parallel to each other. To achieve this parallel interchain packing, the double bonds of the sn-1 and sn-2 chains of each molecule must be aligned at the same position with respect to the bilayer interface which is achieved by a rotation of the C—C bonds in the glycerol moiety in the head group. The extremely strong interchain interactions in the gel phase of DOPC are unique for this lipid with cis dimono-unsaturated acyl chains. Our experimental results suggest that in the pressure-induced gel phase of DOPC the olefinic CH bonds are rotated out of the phase of the bent oleoyl chains and that the oleoyl chains of opposing bilayers bend towards opposite directions.  相似文献   

18.
Recent work by Veatch and Keller has described micron-scale liquid-liquid immiscibility in giant unilamellar vesicles composed of ternary mixtures of cholesterol, dipalmitoylphosphatidylcholine (DPPC), and dioleoylphosphatidylcholine (DOPC). Significantly, they do not observe micron-scale immiscibility in any of the three corresponding binary mixtures under the same conditions. It is shown here that this unexpected result can be accounted for by the formation of a complex between cholesterol and DPPC. The complex is miscible with DPPC and cholesterol, and immiscible with DOPC. A simple, idealized thermodynamic treatment of this model leads to theoretical ternary phase diagrams that are similar to the experimental diagram reported by Veatch and Keller. The model also accounts for significant qualitative features of the deuterium NMR spectra of these mixtures in bilayers.  相似文献   

19.
We have examined the effects of cholesterol on the thermotropic phase behavior and organization of aqueous dispersions of a homologous series of linear disaturated phosphatidylserines by high-sensitivity differential scanning calorimetry and Fourier transform infrared spectroscopy. We find that the incorporation of increasing quantities of cholesterol progressively reduces the temperature, enthalpy, and cooperativity of the gel-to-liquid-crystalline phase transition of the host phosphatidylserine bilayer, such that a cooperative chain-melting phase transition is completely or almost completely abolished at 50 mol % cholesterol, in contrast to the results of previous studies. We are also unable to detect the presence of a separate anhydrous cholesterol or cholesterol monohydrate phase in our binary mixtures, again in contrast to previous reports. We further show that the magnitude of the reduction in the phase transition temperature induced by cholesterol addition is independent of the hydrocarbon chain length of the phosphatidylserine studied. This result contrasts with our previous results with phosphatidylcholine bilayers, where we found that cholesterol increases or decreases the phase transition temperature in a chain length-dependent manner (1993. Biochemistry, 32:516-522), but is in agreement with our previous results for phosphatidylethanolamine bilayers, where no hydrocarbon chain length-dependent effects were observed (1999. Biochim. Biophys. Acta, 1416:119-234). However, the reduction in the phase transition temperature by cholesterol is of greater magnitude in phosphatidylethanolamine as compared to phosphatidylserine bilayers. We also show that the addition of cholesterol facilitates the formation of the lamellar crystalline phase in phosphatidylserine bilayers, as it does in phosphatidylethanolamine bilayers, whereas the formation of such phases in phosphatidylcholine bilayers is inhibited by the presence of cholesterol. We ascribe the limited miscibility of cholesterol in phosphatidylserine bilayers reported previously to a fractional crystallization of the cholesterol and phospholipid phases during the removal of organic solvent from the binary mixture before the hydration of the sample. In general, the results of our studies to date indicate that the magnitude of the effect of cholesterol on the thermotropic phase behavior of the host phospholipid bilayer, and its miscibility in phospholipid dispersions generally, depend on the strength of the attractive interactions between the polar headgroups and the hydrocarbon chains of the phospholipid molecule, and not on the charge of the polar headgroups per se.  相似文献   

20.
A pulsed field gradient NMR was used to study lateral diffusion in the cholesterol-containing oriented bilayers of saturated (dipalmitoyl- and dimyristoyl-) phosphatidylcholines, upon their limiting hydration. Similar dependences of lateral diffusion coefficients on temperature and cholesterol concentration were observed, which agree with phase diagram showing the presence of the regions of disordered and ordered liquid-crystalline phases and a two-phase region. Under the same conditions, the lateral diffusion coefficient of dipalmitoylphosphatidylcholine is lower, which agrees qualitatively with its larger molecular weight. The comparison of data for dipalmitoylphosphatidylcholine with previous results for dipalmitoylsphingomyelin-cholesterol bilayers under the same conditions, in spite of similarity of phase diagrams, shows large (two–three times) differences in the lateral diffusion coefficient and a different profile of its dependence on cholesterol concentration. The comparison of data for dimyristoylphosphatidylcholine with previous results shows that the values of lateral diffusion coefficient and the shape of its dependence on cholesterol concentration coincide at high concentrations (>15 mol%) but differ at lower concentrations The revealed disagreement may be caused by the fact that the measurements were carried out at different water content in the system. At limiting hydration (more than 35% of water), the lateral diffusion coefficient for lipids decreases when cholesterol concentration rises, while at water content about 25% (as a result of equilibrium hydration from vapors) the lateral diffusion coefficient of phosphatidylcholine may be independent of cholesterol concentration. This is the consequence of the denser packing of molecules in the bilayer at reduced water content, an effect that competes with the ordering effect of cholesterol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号