首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Summary Two peptides derived from the surface loop 4 of class 1 Outer Membrane Protein (OMP) ofNeisseria meningitidis were synthesized on solid phase using the Boc/Bzl strategy: one containing the entire loop 4 cyclized and the other representing the polymerized cyclic loop 4. To test a more efficient cyclic peptide presentation, in the present study a strategy was developed to obtain polymers of cyclic peptides. In order to obtain the polymeric cyclic peptide, two protecting groups for cysteine were used — Acm and Mob. The Cys(Acm)-protected cyclic peptide was obtained after removing the Mob group. The polymerization reaction was carried out by simultaneous deprotection/oxidation ofS-Acm with iodine. Analysis of the polymeric cyclic peptide in Tris-tricine-SDS-PAGE showed different bands with molecular weights higher than expected for the corresponding monomeric cyclic peptide. Both peptides were used in immunization of four different mouse strains. The antisera raised against the peptides were evaluated by ELISA and Western blotting vs. OMP preparation ofN. meningitidis. The titers raised against the polymerized cyclic peptide were higher than the ones raised against the cyclic peptide. The antisera elicited did not show bactericidal activity. Nevertheless, the antisera elicited against the polymeric cyclic peptide in the CBA/J mouse strain showed opsonic activity. The antibodies raised against the polymeric cyclic peptide were successfully used as probes in Western blotting experiments to verify the display of loop 4 peptide on the surface of filamentous phage M13.  相似文献   

2.
The currently practiced protocol for routine serosubtyping of Neisseria meningitidis relies on reactivity of whole cells to monoclonal antibodies against the class 1 outer membrane protein (OMP) in ELISAs or dot-blots. This procedure, however, failed to yield serosubtyping information in 28% (48/174) of clinical isolates (1993–1994) in the province of Québec, Canada. These 48 strains were characterized by OMP profiles and ELISAs with outer membrane vesicles (OMVs). Forty out of the 48 strains expressed class 1 OMP, indicating that the inability to assign a serosubtype was not owing to the absence of the class 1 OMP. Of these, 15 (38%) were serosubtypable in ELISAs with outer membrane vesicles. Thus, 81% (141/174) of all meningococcal strains were serosubtypable with ELISAs using whole-cells or OMVs. Because the routinely used procedure for serosubtyping of meningococci is limited in providing serosubtype information, alternate procedures are proposed to obtain comprehensive information for epidemiological identification of this bacterium. Received: 11 June 1996 / Accepted: 5 July 1996  相似文献   

3.
Neisseria meningitidis FAM20 has recently been shown to produce two Fe-regulated proteins (FrpA and FrpC) related to the RTX family of cytotoxins. Here we report the cloning and DNA sequence of the locus containing the gene encoding the larger meningococcal RTX protein FrpC. FrpC was highly similar to FrpA throughout much of the predicted protein, with two main differences. Whereas the FrpA protein had 13 copies of the nine-amino-acid repeat units typical of RTX proteins, FrpC had 43 copies. The additional copies in FrpC apparently arose from a threefold tandem amplification of a 600bp DNA fragment encoding the repeats. In addition, the frpC gene lacked good promoter consensus sequences. An open reading frame (0RF1) of unknown function was found immediately upstream of frpC, suggesting the possibility that frpC was cotranscribed with ORF1. A probable promoter was found 300 bp upstream of ORF1, and it contained a Fur protein-binding sequence found in the promoters of Fe-regulated Escherichia coli genes. DNA upstream of the ORF 1/frpC promoter was homologous to IStO76-like elements surrounding capsulation loci of strains of Haemophilus influenzae. A FrpC-like protein (reactive in immunoblots with monoclonal antibody 9D4; multiple reactive bands of about 200 to 120kDa) was found in five out of eight meningococcal strains but only in one out of 14 other Neisseria, suggesting that FrpC may participate in the pathogenesis of meningococcal disease.  相似文献   

4.
The class 1 outer membrane protein of Neisseria meningitidis B:15:P1.7, 16 was expressed in Bacillus subtilis in high yield as intracellular aggregates. These were easy to isolate and the protein (called BacP1) could be solubilized under denaturing conditions. Sera of mice immunized with thus-solubilized BacP1 contained high titres of antibodies that reacted with the class 1 protein of the meningococcal envelope in immunoblots but did not react with native meningococcal envelope in enzyme immunoassays (EIA) or with intact meningococci in bactericidal assays. However, when the BacP1 protein was complexed with heterologous (Salmonella) lipopolysaccharide, the ensuing sera reacted with meningococcal envelope preparations in both EIA and immunoblots, showed subtype-specific bactericidal activity, and were protective in an infant rat meningitis model.  相似文献   

5.
The porin proteins of Neisseria meningitidis are important components of outer membrane protein (OMP) vaccines. The class 3 porin gene, porB, of a novel serogroup B, serotype 4, 15 isolate from Chile (Ch501) was found to be VR1-4, VR2-15, VR3-15 and VR4-15 by porB variable region (VR) typing. Rabbit immunization studies using outer membrane vesicles revealed immunodominance of individual PorB (class 3) VR epitopes. The predominant anti-Ch501 PorB response was directed to the VR1 epitope. Anti-PorB VR1 mediated killing was suggested by the bactericidal activity of Ch501 anti-sera against a type 4 strain not expressing PorA or class 5 OMPs. Studies that examine the molecular epidemiology of individual porB VRs, and the immune responses to PorB epitopes, may contribute to the development of broadly protective group B meningococcal vaccines.  相似文献   

6.
The evolutionarily conserved protein Omp85 is required for outer membrane protein (OMP) assembly in gram-negative bacteria and in mitochondria. Its Escherichia coli homolog, designated BamA, functions with four accessory lipoproteins, BamB, BamC, BamD, and BamE, together forming the β-barrel assembly machinery (Bam). Here, we addressed the composition of this machinery and the function of its components in Neisseria meningitidis, a model organism for outer membrane biogenesis studies. Analysis of genome sequences revealed homologs of BamC, BamD (previously described as ComL), and BamE and a second BamE homolog, Mlp. No homolog of BamB was found. As in E. coli, ComL/BamD appeared essential for viability and for OMP assembly, and it could not be replaced by its E. coli homolog. BamE was not essential but was found to contribute to the efficiency of OMP assembly and to the maintenance of OM integrity. A bamC mutant showed only marginal OMP assembly defects, but the impossibility of creating a bamC bamE double mutant further indicated the function of BamC in OMP assembly. An mlp mutant was unaffected in OMP assembly. The results of copurification assays demonstrated the association of BamC, ComL, and BamE with Omp85. Semi-native gel electrophoresis identified the RmpM protein as an additional component of the Omp85 complex, which was confirmed in copurification assays. RmpM was not required for OMP folding but stabilized OMP complexes. Thus, the Bam complex in N. meningitidis consists of Omp85/BamA plus RmpM, BamC, ComL/BamD, and BamE, of which ComL/BamD and BamE appear to be the most important accessory components for OMP assembly.Membrane-embedded β-barrel proteins are found in the outer membranes (OMs) of gram-negative bacteria, mitochondria, and chloroplasts. Only in recent years have cellular components required for the assembly and insertion of these OM proteins (OMPs) into the OM been identified. Omp85, which was first characterized in Neisseria meningitidis, is the key protein of the OMP assembly machinery (41). The function of Omp85 has been preserved during evolution, not only in gram-negative bacteria (8, 37, 44, 46) but also in mitochondria, where an Omp85 homolog, also known as Tob55 or Sam50, was shown to mediate the assembly of β-barrel proteins into the OM (15, 23, 27). Accordingly, bacterial OMPs are still recognized by the eukaryotic assembly machinery: when expressed in yeast, bacterial OMPs were found to be assembled into the mitochondrial OM in a Tob55-dependent manner (43). Omp85 in Escherichia coli, which was recently renamed BamA, for β-barrel assembly machinery (Bam) component A, is associated with at least four lipoproteins: BamB (formerly known as YfgL), BamC (NlpB), BamD (YfiO), and BamE (SmpA) (32, 46). In E. coli, BamB, BamC, and BamE are not essential, but the phenotypes of deletion mutants suggest that these proteins contribute to the efficiency of OMP assembly. Like BamA, BamD is an essential protein in E. coli (24, 26), involved in OMP assembly (24). These lipoproteins are evolutionarily less well conserved; the mitochondrial Tob55 protein is associated with two accessory proteins, but they do not show any sequence similarity with the lipoproteins of the E. coli Bam complex (14).Besides E. coli, N. meningitidis is one of the major bacterial model organisms for studies of OM assembly. As mentioned above, it was the first organism in which the function of Omp85 was identified (41), and also, the role of an integral OMP, designated LptD (formerly Imp or OstA), in the transport of lipopolysaccharide (LPS) to the cell surface was first established in N. meningitidis (3). With regard to OM biogenesis, N. meningitidis has several features that distinguish it from E. coli. For example, in contrast to E. coli (13), N. meningitidis mutants defective in LPS synthesis or transport are viable (3, 34), and OMPs are assembled perfectly well in such mutants (33). Furthermore, in OMP assembly mutants of E. coli, the periplasmic accumulation of unassembled OMPs is limited due to the induction of the σE extracytoplasmic stress response, which results in the degradation of unfolded OMPs (30) and the inhibition of their synthesis by small regulatory RNAs (20). In contrast, in N. meningitidis, most of the components involved in this response are absent (4), and unassembled OMPs continue to accumulate as periplasmic aggregates when OMP assembly is halted (41). However, the composition of the Bam complex and the role of accessory components in OMP assembly have not so far been studied in this organism. Therefore, to further understand the OMP assembly process in N. meningitidis, we have now analyzed the composition of the Bam complex and addressed the roles of the different components.  相似文献   

7.
Two peptides derived from the surface loop 4 of class1 Outer Membrane Protein (OMP) of Neisseriameningitidis were synthesized on solid phase usingthe Boc/Bzl strategy: one containing the entire loop4 cyclized and the other representing the polymerizedcyclic loop 4. To test a more efficient cyclic peptidepresentation, in the present study astrategy was developed to obtain polymers of cyclic peptides. Inorder to obtain the polymeric cyclic peptide, twoprotecting groups for cysteine were used – Acm andMob. The Cys(Acm)-protected cyclic peptide wasobtained after removing the Mob group. Thepolymerization reaction was carried out bysimultaneous deprotection/oxidation of S-Acmwith iodine. Analysis of the polymeric cyclic peptidein Tris-tricine-SDS-PAGE showed different bandswith molecular weights higher than expected for thecorresponding monomeric cyclic peptide. Both peptideswere used in immunization of four different mouse strains.The antisera raised against the peptides wereevaluated by ELISA and Western blotting vs. OMPpreparation of N. meningitidis. The titersraised against the polymerized cyclic peptide werehigher than the ones raised against the cyclicpeptide. The antisera elicited did not showbactericidal activity. Nevertheless, the antiseraelicited against the polymeric cyclic peptide in theCBA/J mouse strain showed opsonic activity. Theantibodies raised against the polymeric cyclic peptidewere successfully used as probes in Western blottingexperiments to verify the display of loop 4 peptide onthe surface of filamentous phage M13.  相似文献   

8.
Identification and cloning of a fur homologue from Neisseria meningitidis   总被引:13,自引:1,他引:12  
The iron response in a number of bacterial systems is mediated by fur (f erric u ptake r egulation)-like regulatory systems. We have cloned and characterized a gene from Neisseria meningitidis that was homologous to Escherichia coli fur. This clone was capable of modulating expression from both E. coli and neisserial iron-regulated promoters in response to iron, and it produced a protein that reacted with anti-E. coli fur serum. Although the DNA and predicted amino acid sequences were very similar to those of four other published fur homologues, meningococcal fur was the most divergent of the group. Inability to construct a meningococcal fur mutant suggested that fur may be essential in this species.  相似文献   

9.
Twenty-four monoclonal antibodies (mAbs) against group B Neisseria meningitidis surface antigens were analyzed by immunoenzymatic assays and by a bactericidal test. Two mAbs were specific to polysaccharide B and one to lipopolysaccharide. The others were directed against outer membrane proteins ranging in molecular mass from 25 to 200 kDa. The outer membrane protein epitopes recognized by the mAbs were not conformational and were located on the outer surface of the microorganism. Linear epitopes on the class 5 protein, exposed on the surface of the membrane, were able to induce bactericidal antibodies to the homologous strain. The susceptibility of Neisseria meningitidis to these antibodies was unchanged when this organism was cultivated under conditions of iron depletion. These results demonstrate that peptides derived from class 5 proteins are potentially important in synthetic peptide or in recombinant protein vaccines containing linear bactericidal epitopes.  相似文献   

10.
No vaccine is yet available against serogroup B meningococci, which are a common cause of bacterial meningitis. Some outer membrane proteins (OMP), LPS, and capsular polysaccharides have been identified as protective Ag. The amino acid sequence of the protective B cell epitopes present within the class 1 OMP has been described recently. Synthetic peptides containing OMP B cell epitopes as well as capsular polysaccharides or LPS protective B cell epitopes have to be presented to the immune system in association with T cell epitopes to achieve an optimal Ir. The use of homologous, i.e., meningococcal, T cell epitopes has many advantages. We therefore investigated recognition sites for human T cells within the meningococcal class 1 OMP. We have synthesized 16 class 1 OMP-derived peptides encompassing predicted T cell epitopes. Peptides corresponding to both surface loops and trans-membrane regions (some of which occur as amphipathic beta-sheets) of the class 1 OMP were found to be recognized by T cells. In addition, 10 of 11 peptides containing predicted amphipathic alpha-helices and four of five peptides containing T cell epitope motifs according to Rothbard and Taylor (Rothbard, J. B., and W. R. Taylor. 1988. EMBO J 7:93) were recognized by lymphocytes from one or more volunteers. Some of the T and B cell epitopes were shown to map to identical regions of the protein. At least six of the peptides that were found to contain T cell epitopes show homology to constant regions of the meningococcal class 3 OMP and the gonococcal porins PIA and PIB. Peptide-specific T cell lines and T cell clones were established to investigate peptide recognition in more detail. The use of a panel of HLA-typed APC revealed clear HLA-DR restriction patterns. It seems possible now to develop a (semi-) synthetic meningococcal vaccine with a limited number of constant T cell epitopes that cover all HLA-DR locus products.  相似文献   

11.
The BamA protein is the key component of the Bam complex, the assembly machinery for outer membrane proteins (OMP) in gram-negative bacteria. We previously demonstrated that BamA recognizes its OMP substrates in a species-specific manner in vitro. In this work, we further studied species specificity in vivo by testing the functioning of BamA homologs of the proteobacteria Neisseria meningitidis, Neisseria gonorrhoeae, Bordetella pertussis, Burkholderia mallei, and Escherichia coli in E. coli and in N. meningitidis. We found that no BamA functioned in another species than the authentic one, except for N. gonorrhoeae BamA, which fully complemented a N. meningitidis bamA mutant. E. coli BamA was not assembled into the N. meningitidis outer membrane. In contrast, the N. meningitidis BamA protein was assembled into the outer membrane of E. coli to a significant extent and also associated with BamD, an essential accessory lipoprotein of the Bam complex.Various chimeras comprising swapped N-terminal periplasmic and C-terminal membrane-embedded domains of N. meningitidis and E. coli BamA proteins were also not functional in either host, although some of them were inserted in the OM suggesting that the two domains of BamA need to be compatible in order to function. Furthermore, conformational analysis of chimeric proteins provided evidence for a 16-stranded β-barrel conformation of the membrane-embedded domain of BamA.  相似文献   

12.
Lysophosphatidic acid (LPA) acyltransferases of Neisseria meningitidis and Neisseria gonorrhoeae were identified which share homology with other prokaryotic and eukaryotic LPA acyltransferases. In Escherichia coli, the conversion of LPA to phosphatidic acid, performed by the 1-acyl-sn-glycerol-3-phosphate acyltransferase PlsC, is a critical intermediate step in the biosynthesis of membrane glycerophospholipids. A Tn916-generated mutant of a serogroup B meningococcal strain was identified that exhibited increased amounts of capsular polysaccharide, as shown by colony immunoblots, and a threefold increase in the number of assembled pili. The single, truncated 3.8 kb Tn916 insertion in the meningococcal mutant was localized within a 771 bp open reading frame. The gonococcal equivalent of this gene was identified by transformation with the cloned meningococcal mutant gene. In N. gonorrhoeae, the mutation increased piliation fivefold. The insertions were found to be within a gene that was subsequently designated nIaA (n eisserial L PA acyltransferase). The predicted neisserial LPA acyltransferases were homologous (>20% identity,>40% amino acid similarity) to the family of PlsC protein homologues. A cloned copy of the meningococcal nIaA gene complemented in trans a temperature-sensitive E. coli PlsCts? mutant. Tn916 and Ω-cassette insertional inactivations of the neisserial nIaA genes altered the membrane glycerophospholipid compositions of both N. meningitidis and N. gonorrhoeae but were not lethal. Therefore, the pathogenic Neisseria spp. appear to be able to utilize alternative enzyme(s) to produce phosphatidic acid. This hypothesis is supported by the observation that, although the amounts of mature glycerophospholipids were altered in the meningococcal and the gonococcal nIaA mutants, glycerophospholipid synthesis was detectable at significant levels. In addition, acyltransferase enzymatic activity, while reduced in the gonococcal nIaA mutant, was increased in the meningococcal nIaA mutant. We postulate that the pathogenic Neisseria spp. are able to utilize alternate acyltransferases to produce glycerophospholipids in the absence of nIaA enzymatic activity.Implementation of these secondary enzymes results in alterations of glycerophospholipid composition that lead to pleiotropic effects on the cell surface components, including effects on capsule and piliation.  相似文献   

13.
Adherence of capsulate Neisseria meningitidis to endothelial and epithelial cells is facilitated in variants that express pili. Whereas piliated variants of N. meningitidis strain C311 adhered to endothelial cells in large numbers (<150 bacteria/cell), derivatives containing specific mutations that disrupt pilE encoding the pilin subunit were both non-piliated and failed to adhere to endothelial cells (<1 bacterium/ cell). In addition, meningococcal pili recognized human endothelial and epithelial cells but not cells originating from other animals. Variants of strain C311 were obtained that expressed pilins of reduced apparent Mr and exhibited a marked increase in adherence to epithelial cells. Structural analysis of pilins from two hyper-adherent variants and the parent strain were carried out by DNA sequencing of their pilE genes. Deduced molecular weights of pilins were considerably tower compared with their apparent Mr values on SDS-PAGE. Hyper-adherent pilins shared unique changes in sequence including substitution of Asn-113 for Asp-113 and changes from Asn-Asp-Thr-Asp to Thr-Asp-Ala-Lys at residues 127-130 in mature pilin. Asn residues 113 and 127 of‘parental’pilin both form part of the typical eukaryotic N-glycosylation motif Asn-X-Ser/Thr and could potentially be glycosylated post-translationally. The presence of carbohydrate on pilin was demonstrated and when pilins were deglycosylated, their migration on SDS-PAGE increased, supporting the notion that variable glycosylation accounts for discrepancies in apparent and deduced molecular weights. Functionally distinct pilins produced by two fully piliated variants of a second strain (MC58) differed only in that the putative glycosylation motif Asn-60-Asn-61-Thr-62 in an adherent variant was replaced with Asp-60-Asn-61-Ser-62 in a non-adherent variant. Fully adherent backswitchers obtained from the non-adherent variant always regained Asn-60 but retained Ser-62. We propose, therefore, that functional variations in N. meningitidis pili may be modulated in large part by primary amino acid sequence changes that ablate or create N-linked glycosylation sites on the pilin subunit.  相似文献   

14.
Aims: Moritella viscosa is a Gram‐negative psychrophilic bacterium that causes winter ulcer disease in farmed fish. The aim of the study was to describe an outer membrane protein of roughly 20 kDa in pathogenic M. viscosa and to compare the coincident protein of strains isolated from different fish species and geographical locations. Methods and Results: The protein was isolated from a pathogenic strain of M. viscosa. An oligopeptide sequence obtained with MS/MS analysis showed homology to Escherichia coli OmpA and Neisseria surface protein A. The protein was named Moritella viscosa outer membrane protein 1 (MvOmp1), and sequence analysis confirmed that it is an integral membrane protein consisting of eight antiparallel β‐strands, three short periplasmic turns and four long hydrophilic extracellular loops. The encoding gene, mvomp1, was fully sequenced in nine strains representing different serotypes and phenotypes. The results revealed some differences in the extracellular loops between strains. The mvomp1 gene was cloned and expressed in E. coli, and the recombinant product was recognized by anti‐M. viscosa polyclonal antisera. Conclusions: The results indicate that MvOmp1 is a major protective antigen of M. viscosa. Significance and Impact of the Study: The results open up possibilities for use of the protein as a part of a subunit vaccine in the future.  相似文献   

15.
A mechanism of capsular polysaccharide phase variation in Neisseria meningitidis is described. Meningococcal cells of an encapsulated serogroup B strain were used in invasion assays. Only unencapsulated variants were found to enter epithelial cells. Analysis of one group of capsule-deficient variants indicated that the capsular polysaccharide was re-expressed at a frequency of 10?3. Measurement of enzymatic activities involved in the biosynthesis of the α-2,8 polysialic acid capsule showed that polysialyltransferase (PST) activity was absent in these capsule-negative variants. Nucleotide sequence analysis of siaD revealed an insertion or a deletion of one cytidine residue within a run of (dC)7 residues at position 89, resulting in a frameshift and premature termination of translation. We analysed unencapsulated isolates from carriers and encapsulated case isolates collected during an outbreak of meningococcal disease. Further paired blood-culture isolates and unencapsulated nasopharyngeal isolates from patients with meningococcal meningitis were examined. In all unencapsulated strains analysed we found an insertion or deletion within the oligo-(dC) stretch within siaD, resulting in a frameshift and loss of capsule formation. All encapsulated isolates, however, had seven dC residues at this position, indicating a correlation between capsule phase variation and bacterial invasion and the out-break of meningococcal disease.  相似文献   

16.
Fructose‐1, 6‐bisphosphate aldolases (FBA) are cytoplasmic glycolytic enzymes, which despite lacking identifiable secretion signals, have also been found localized to the surface of several bacteria where they bind host molecules and exhibit non‐glycolytic functions. Neisseria meningitidis is an obligate human nasopharyngeal commensal, which has the capacity to cause life‐threatening meningitis and septicemia. Recombinant native N. meningitidis FBA was purified and used in a coupled enzymic assay confirming that it has fructose bisphosphate aldolase activity. Cell fractionation experiments showed that meningococcal FBA is localized both to the cytoplasm and the outer membrane. Flow cytometry demonstrated that outer membrane‐localized FBA was surface‐accessible to FBA‐specific antibodies. Mutational analysis and functional complementation was used to identify additional functions of FBA. An FBA‐deficient mutant was not affected in its ability to grow in vitro, but showed a significant reduction in adhesion to human brain microvascular endothelial and HEp‐2 cells compared to its isogenic parent and its complemented derivative. In summary, FBA is a highly conserved, surface exposed protein that is required for optimal adhesion of meningococci to human cells.  相似文献   

17.
The immunophilin family of FK506-binding proteins (FKBPs), involved in eukaryotic protein folding and cell regulation, have recently been found to have prokaryotic homologues. Genes with sequences homologous to those encoding human FKBPs were examined in Neisseria species. An FKBP DNA sequence was present, as shown by the polymerase chain reaction and Southern blotting experiments, in the chromosome of Neisseria meningitidis (14 strains) and in all 11 different commensal Neisseria spp. studied, but was not found in Neisseria gonorrhoeae (11 strains tested) or in Moraxella catarrhalis. The nucleotide and predicted protein sequences of the FKBP-encoding domain from five of the meningococcal strains were highly conserved (e.g. ≥97% homologous). The meningococcal nucleotide sequence was ≥93% homologous and the consensus meningococcal protein sequence was ≥97% homologous to FKBP sequences found in seven different commensal Neisseria spp. The meningococcal nucleotide and predicted protein sequences were ≥59% homologous to the conserved C-terminus of the human FKBP gene family. The FKBP nucleotide sequence was present as a single copy in the chromosome of commensal Neisseria spp. and in most strains of N. meningitidis. The FKBP gene was linked to the silent pilin locus, pilS, in class II-piliated meningococcal strains. In meningococcal strains expressing class I pili, the FKBP gene was linked to one of several pilS loci but not the pilE locus present in these strains. FKBP genes found in commensal Neisseria spp. were not linked to known pilin loci.  相似文献   

18.
Opacity (Opa) proteins are a family of antigenically variable outer-membrane proteins of Neisseria meningitidis. Even among clonally related epidemic meningococcal isolates, there is greater variation of Opa protein expression than can be accounted for by the opa gene repertoire of any individual strain. We characterized the opa genes of eight closely related Isolates of serogroup A N. meningitidis (subgroup IV-1) from a recent meningitis epidemic in West Africa. DNA sequence analysis and Southern blot experiments indicated that changes occurred in the opa genes of these bacteria as they spread through the human population, over a relatively short period of time. Such changes in one or a few loci within a clonal population are referred to as microevolution. The distribution of sequences present in hypervariable (HV) regions of the opa genes suggests that duplication of all or part of opa genes into other opa loci changed the repertoire of Opa proteins that could be expressed. Additional variability in this gene family appears to have been introduced by horizontal exchange of opa sequences from other meningococcal strains and from Neisseria gonorrhoeae. These results indicate that processes of recombination and genetic exchange contributed to variability in major surface antigens of this clonal population of pathogenic bacteria.  相似文献   

19.
Galectin‐3 is expressed and secreted by immune cells and has been implicated in multiple aspects of the inflammatory response. It is a glycan binding protein which can exert its functions within cells or exogenously by binding cell surface ligands, acting as a molecular bridge or activating signalling pathways. In addition, this lectin has been shown to bind to microorganisms. In this study we investigated the interaction between galectin‐3 and Neisseria meningitidis, an important extracellular human pathogen, which is a leading cause of septicaemia and meningitis. Immunohistochemical analysis indicated that galectin‐3 is expressed during meningococcal disease and colocalizes with bacterial colonies in infected tissues from patients. We show that galectin‐3 binds to N. meningitidis and we demonstrate that this interaction requiresfull‐length, intact lipopolysaccharide molecules. We found that neither exogenous nor endogenous galectin‐3 contributes to phagocytosis of N. meningitidis; instead exogenous galectin‐3 increases adhesion to monocytes and macrophages but not epithelial cells. Finally we used galectin‐3 deficient (Gal‐3?/?) mice to evaluate the contribution of galectin‐3 to meningococcal bacteraemia. We found that Gal‐3?/? mice had significantly lower levels of bacteraemia compared with wild‐type mice after challenge with live bacteria, indicating that galectin‐3 confers an advantage to N. meningitidis during systemic infection.  相似文献   

20.
The prevention of meningococcal disease may be improved by recombinant vaccines such as 4CMenB and rLP2086 that target the factor H binding protein (fHbp), an immunogenic surface component of Neisseria meningitidis present as one of three variants. Whether such vaccines decrease carriage of invasive isolates and thus induce herd immunity is unknown. We analyzed the genetic diversity and levels of expression of fHbp among 268 carriage strains and compare them to those of 467 invasive strains. fhbp gene sequencing showed higher proportions of variants 2 and 3 among carriage isolates (p<0.0001). Carriage isolates expressed lower levels of fHbp (p<0.01) but that remain high enough to predict targeting by antibodies against fHbp particularly in group B isolates belonging to the frequent hypervirulent clonal complexes in Europe and North America (cc32, cc41/44, cc269). This suggests that fHbp targeting meningococcal vaccines might reduce, at least in part, the acquisition of some hyperinvasive isolates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号