首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ice nucleation (IN) gene inaA of epiphytic Erwinia (Pantoea) ananas IN10 was transformed into Enterobacter cloacae WBMH-3-CMr originated from the faeces of silkworms. The transformant designated as Ent. cloacae WBMH-3-CMr(pICE6S13) exhibited IN activity, unlike the parent strain. The transgenic strain was ingested by mulberry pyralid larvae, fed on detached mulberry leaves, and the supercooling capacity and cold hardiness of these larvae were examined. The mean supercooling point (SCP) of the larvae ingesting the transgenic strain was - 3.3 degrees C, 8 degrees C higher than that of larvae treated with distilled water (control) and 1.5 C higher than an ice nucleation active (INA) strain of Erw. ananas. The SCPs of the larvae were stably maintained over the 9 d after ingestion. The maintenance of these high SCPs was due to transgenic Ent. cloacae having a more stable and efficient gut colonization than Erw. ananas, which is identified by the distribution of a narrower range of SCPs (-2 to -5 degrees C) in larvae treated with the transgenic stain. Furthermore, most of the larvae ingesting the transgenic strain froze and died when they were exposed to cold conditions of -5 degrees C for 18 h, 3 or 7 d after ingestion. In contrast, most of the larvae ingesting no bacterium did not die under similar conditions. On the other hand, the growth ability of Ent. cloacae WBMH-3-CMr on mulberry leaves tended to be lower than that of epiphytic Erw. ananas, as assayed by pot tests. These findings would expand the possibility of biological control using INA bacteria since Ent. cloacae would harbour a broader host (insect) range for gut colonization and a smaller affinity to plants to benefit from prevention of plant frost injury.  相似文献   

2.
K Watanabe  M Sato 《Cryobiology》1999,38(4):281-289
To evaluate the suitability of using ice nucleation active (INA) bacteria for the biological control of insect pests, the supercooling point (SCP) of larvae of mulberry pyralid, Glyphodes duplicalis, and silkworm, Bombyx mori, ingesting INA strains of Erwinia (Pantoea) ananas and Pseudomonas syringae was determined. Mean SCP of the guts of silkworm larvae ingesting INA strains of E. ananas ranged from -2.5 to -2.8 degrees C, being 5 degrees C higher than that in control treatments. Similarly, mean SCP of mulberry pyralid larvae ingesting INA strain of E. ananas, which can grow well in the gut, was -4.7 degrees C at 3 days after treatment, being 6.5 degrees C higher than that in control treatments. On the other hand, mean SCP of the larvae-ingesting INA strain of P. syringae, which cannot grow in the gut, was -9.0 degrees C at 3 days after treatment, rising by only 2.5 degrees C higher than that in the control treatments. In addition, more than 80% of the larvae of mulberry pyralid ingesting the INA strain of E. ananas froze and eventually died when exposed to -6 degrees C for 18 h, while only 36% of the larvae ingesting the INA strain of P. syringae, or approximately 20% of the control larvae, froze and died. Thus, the gut colonization by INA strains of E. ananas reduced remarkably the cold hardiness of the insects. These findings suggest that INA strains of E. ananas could be effective as a potential biological control agent of insect pests.  相似文献   

3.
To evaluate the suitability of using ice nucleation active (INA) bacteria for the biological control of insect pests, the supercooling point (SCP) of larvae of mulberry pyralid,Glyphodes duplicalis,and silkworm,Bombyx mori,ingesting INA strains ofErwinia(Pantoea)ananasandPseudomonas syringaewas determined. Mean SCP of the guts of silkworm larvae ingesting INA strains ofE. ananasranged from −2.5 to −2.8°C, being 5°C higher than that in control treatments. Similarly, mean SCP of mulberry pyralid larvae ingesting INA strain ofE. ananas,which can grow well in the gut, was −4.7°C at 3 days after treatment, being 6.5°C higher than that in control treatments. On the other hand, mean SCP of the larvae-ingesting INA strain ofP. syringae,which cannot grow in the gut, was −9.0°C at 3 days after treatment, rising by only 2.5°C higher than that in the control treatments. In addition, more than 80% of the larvae of mulberry pyralid ingesting the INA strain ofE. ananasfroze and eventually died when exposed to −6°C for 18 h, while only 36% of the larvae ingesting the INA strain ofP. syringae,or approximately 20% of the control larvae, froze and died. Thus, the gut colonization by INA strains ofE. ananasreduced remarkably the cold hardiness of the insects. These findings suggest that INA strains ofE. ananascould be effective as a potential biological control agent of insect pests.  相似文献   

4.
冰核细菌在我国北方玉米上的消长动态规律   总被引:4,自引:0,他引:4  
研究证明,菠萝欧文氏菌(Erwinia ananas)为我国北方玉米上优势冰核细菌种类,占总体INA细菌95 %以上。采用定量定性和定期取样分离方法,首次研究INA细菌在玉米上的消长动态规律。结果表明:玉米不同生长发育阶段是影响INA细菌在玉米上数量分布和消长动态变化的重要因素,以抽雄至成熟期间分布INA细菌数量最多,高达10 7~10 8CFU/ g,比拔节至抽雄期高出2~3个数量级,比苗期至拔节期高出4~5个数量级;同时还指出,玉米不同播期,对INA细菌数量分布影响显著,差异很大,其中INA细菌分布数量消长变化,以正常播种(1.9×10 7CFU / g) >中期播种(7.9×10 5CFU/ g) >晚期播种(5 .0×10 4 CFU/ g) ;研究指出,处于抽雄至成熟期间的玉米上分布的INA细菌数量最多,因此期间(8月上旬至9月下旬) ,气温逐渐降低,昼夜温差大,田间结露多,加上玉米处于成熟阶段,抗INA细菌能力弱,这些因素有利于低温(5~2 0℃范围内生长)型INA细菌生长繁殖,故使INA细菌分布数量最多  相似文献   

5.
The ice nucleation activity (INA) of three strains of Pseudomonas fluorecens, nos 553, 554 and 606, isolated by the Institute for Pathogen Diagnostics in Ascherleben, Germany, was determined. Under equal growth conditions and at given test temperatures the ice nucleation frequency spectra of the isolates differed slightly. The fraction of cells which acted as ice nuclei increased with falling temperatures. Below ?5°C the nucleation frequency rose from 10-8 to 10-3. Between, 0 and ?10°C only a fraction of approximately 2 to 5 × 10-3 cells performed ice nucleation activity. Fifteen newly synthesized chemicals showed no or only a very slight intrinsic INA at ?5°C and ?7°C. The compounds were used as antinucleators against INA-exhibiting bacteria. In INA-exhibiting suspensions of isolate 553 bacterial ice nuclei were reduced after treatment with the 15 compounds. Dependent on the compounds, a nucleation frequency of ?8.32 to ?5.10 was detected at ?5°C. At ?7°C, the frequency amounted to ?7.89 to ?5.05. As the temperature was lowered to ?10°C in bacterial suspensions which were treated with 9 (of the 15) compounds, a remainder of 1.79 to 5.91 × 10-6 cells retained ice nucleation activity. The most pronounced inhibitory effect was noted for the compounds 1989/6255, 1989/6436 and 1990/6158. In a 10-fold dilution of isolate 553 the compound 1989/6153 inhibited ice nucleation between 0 and 10°C so strongly that it was about 100 times below the control. The ‘tube-freezing’ method showed that on excised corn leaves treated with 1989/6259 and 1990/6155, the bacterial INA decreased while the super-cooling was more pronounced. ‘Frostgard’, 1986/6205, 1986/6199 and 1989/6259 inhibited most INA-exhibiting bacteria on corn seedlings. Compared to inoculated plants, a significantly higher percentage of treated plants survived at ?2 and ?3°C.  相似文献   

6.
The sub-Antarctic beetle Hydromedion sparsutum (Coleoptera, Perimylopidae) is common locally on the island of South Georgia where sub-zero temperatures can be experienced in any month of the year. Larvae were known to be weakly freeze tolerant in summer with a mean supercooling point (SCP) around -4 degrees C and a lower lethal temperature of -10 degrees C (15min exposure). This study investigated the effects of successive freezing exposures on the SCP and subsequent survival of summer acclimatised larvae. The mean SCP of field fresh larvae was -4.2+/-0.2 degrees C with a range from -1.0 to -6.1 degrees C. When larvae were cooled to -6.5 degrees C on 10 occasions at intervals of 30min and one and four days, survival was 44, 70 and 68%, respectively. The 'end of experiment' SCP of larvae surviving 10 exposures at -6.5 degrees C showed distinct changes and patterns from the original field population depending on the interval between exposure. In the 30min interval group, most larvae froze between -6 and -8 degrees C, a depression of up to 6 degrees C from the original sample; all larvae were dead when cooling was continued below the SCP to -12 degrees C. In the one and four day interval groups, most larvae froze above -6 degrees C, showing no change as a result of the 10 exposures at -6.5 degrees C. As with the 30min interval group, some larvae froze below -6 degrees C, but with a wider range, and again, all were dead when cooled to -12 degrees C. However, in the one and four day interval groups, some larvae remained unfrozen when cooled to -12 degrees C, a depression of their individual SCP of at least 6 degrees C, and were alive 24h after cooling. In a further experiment, larvae were cooled to their individual SCP temperature at daily intervals on 10 occasions to ensure that every larva froze every day. Most larvae which showed a depression of their SCP of 2-4 degrees C from their day one value became moribund or died after six or seven freezing events. Survival was highest in larvae with SCPs of -2 to -3 degrees C on day one and which froze at this level on all 10 occasions. The results indicate that in larvae in which the SCP is lowered following sub-zero exposure, the depression of the SCP is greatest in individuals that do not actually freeze. Further, the data suggest that after successive frost exposures in early winter the larval population may become segregated into two sub-populations with different overwintering strategies. One group consists of larvae that freeze consistently in the temperature range from -1 to -3 degrees C and can survive multiple freeze-thaw cycles. A second group with lower initial SCPs (around -6 degrees C), or which fall to this level or lower (down to -12 degrees C) after freezing on one or more occasions, are less likely to freeze through extended supercooling, but more likely to die if freezing occurs.  相似文献   

7.
Bacterial ice nucleation: a factor in frost injury to plants   总被引:23,自引:4,他引:19       下载免费PDF全文
Lindow SE  Arny DC  Upper CD 《Plant physiology》1982,70(4):1084-1089
Heterogeneous ice nuclei are necessary, and the common epiphytic ice nucleation active (INA) bacteria Pseudomonas syringae van Hall and Erwinia herbicola (Löhnis) Dye are sufficient to incite frost injury to sensitive plants at −5°C. The ice nucleation activity of the bacteria occurs at the same temperatures at which frost injury to sensitive plants occurs in nature. Bacterial ice nucleation on leaves can be detected at about −2°C, whereas the leaves themselves, i.e. without INA bacteria, contain nuclei active only at much lower temperatures. The temperature at which injury to plants occurs is predictable on the basis of the ice nucleation activity of leaf discs, which in turn depends on the number and ice nucleation activity of their resident bacteria. Bacterial isolates which are able to incite injury to corn at −5°C are always active as ice nuclei at −5°C. INA bacteria incited frost injury to all of the species of sensitive plants tested.  相似文献   

8.
Ice nucleation temperatures of individual leaves were determined by a tube nucleation test. With this assay, a direct quantitative relationship was obtained between the temperatures at which ice nucleation occurred on individual oat (Avena sativa L.) leaves and the population sizes of ice nucleation active (INA) bacteria present on those leaves. In the absence of INA bacteria, nucleation of supercooled growth-chamber grown oat leaves did not occur until temperatures were below approximately −5°C. Both nucleation temperature and population size of INA bacteria were determined on the same individual, field-grown oat leaves. Leaves with higher ice nucleation temperatures harbored larger populations of INA bacteria than did leaves with lower nucleation temperatures. Log10 mean populations of INA bacteria per leaf were 5.14 and 3.51 for leaves with nucleation temperatures of −2.5°C and −3.0°C, respectively. Nucleation frequencies (the ratio of ice nuclei to viable cells) of INA bacteria on leaves were lognormally distributed. Strains from two very different collections of Pseudomonas syringae and one of Erwinia herbicola were cultured on nutrient glycerol agar and tested for nucleation frequency at −5°C. Nucleation frequencies of these bacterial strains were also lognormally distributed within each of the three sets. The tube nucleation test was used to determine the frequency with which individual leaves in an oat canopy harbored large populations of INA bacteria throughout the growing season. This test also predicted relative frost hazard to tomato (Lycopersicon esculentum Mill) plants.  相似文献   

9.
云南植物上冰核活性细菌鉴定   总被引:4,自引:0,他引:4  
从云南植物上分离到92株冰核活性细菌,并进行了鉴定。其中菠萝欧文氏菌61株,占66.3%;草生欧文氏菌2株,占2.2%;丁香假单胞菌21株,占22.8%;黄瓜角斑病菌2株,占2.2%;菜豆荚斑假单胞菌6株,占6.5%。云南省冰核活性细菌的优势种类是菠萝欧文氏菌,其次是丁香假单胞菌类。  相似文献   

10.
我国冰核活性细菌的优势种类调查与研究   总被引:6,自引:2,他引:4  
孙福在  韦建福  朱红 《生态学报》1996,16(6):618-622
1986 ̄1994年,从国内17个省、市、自治区的68种植物上分离到了250株冰核活性细菌,经鉴定分别属于3个属的17个种或致病变种。其中出现最多的是菠萝欧文氏菌,共133株,占总数的53.2%,其次是丁香假单胞菌群,共70株,占28%,其它种类的冰核活性细菌共47株,仅占18.8%。因此,我国冰核活性细菌的优势菌种是E.ananas,其次是P.syringae pvs。在低纬度的南方地区中E.a  相似文献   

11.
Deciduous fruit tree orchards located in the Pacific Northwest were surveyed over a 3-year period for the presence of ice nucleation-active (INA) bacteria. In the Yakima Valley, only about 30% of the fruit tree orchards contained INA bacteria (median population ca. 3 × 102 CFU/g [fresh weight]) in contrast to nearly 75% of the orchards in the Hood River Valley (median population ca. 5 × 103 CFU/g [fresh weight]). These INA populations ranged from less than 10 to over 106 CFU/g (fresh weight) of blossoms and, in Hood River Valley orchards, generally comprised over 10% of the total bacterial population. Populations of INA bacteria fluctuated during the year with highest levels developing on buds and flowers during the cool, wet spring, followed by a drop in populations during the warmer, drier, summer months and finally a gradual increase in the autumn. The INA bacteria persisted on dormant buds from which they again colonized young developing vegetative tissues. All INA bacteria were identified as Pseudomonas syringae. The frequency of ice nucleation at −5°C for these strains ranged from nearly every cell being INA to less than 1 in 107 cells. The median frequency of ice nucleation at −5°C was 104 cells per ice nucleus. The INA P. syringae strains from individual orchards were diverse with respect to bacteriocin typing and in ice nucleation frequency. The consistent absence of detectable INA bacteria or presence of low populations in most of the orchards surveyed during periods when critical temperatures (i.e., −2 to −5°C) were common indicated a limited role for INA bacteria in frost susceptibility of most Pacific Northwest orchards.  相似文献   

12.
冰核细菌表达冰核蛋白特性的研究   总被引:10,自引:0,他引:10  
选用10025A和QF-95-F19两株分离自杨树的冰核活性细菌,探讨了两株菌不同生长阶段与它们冰核活性表达的特性。实验结果显示,冰核活性细菌在MPDA培养液中表达冰核蛋白的特性及活性与细菌浓度、菌龄以及培养的环境条件相关,两株菌在表达冰核活性时对培养基的营养组分没有表现出特殊的要求。同时还进一步阐明了不同生长温度冰核活性细菌对冰核蛋白表达的影响。  相似文献   

13.
The growth of ice nucleation-active and near-isogenic ice nucleation-deficient (Ice) Pseudomonas syringae strains coexisting on leaf surfaces was examined to determine whether competition was sufficient to account for antagonism of phylloplane bacteria. The ice nucleation frequency spectra of 46 IceP. syringae mutants, obtained after mutagenesis with ethyl methanesulfonate, differed both quantitatively and qualitatively, but the mutants could be grouped into four distinct phenotypic classes. The numbers of ice nucleation-active bacteria and ice nuclei active at -5 degrees C were reduced on plants colonized with IceP. syringae mutant strains before challenge inoculations with an IceP. syringae wild-type strain. Frost injury to plants pretreated with IceP. syringae strains was also reduced significantly compared with that to control plants and was correlated with the population size of the IceP. syringae strain and with the numbers of ice nuclei active at -5 degrees C. An IceP. syringae strain colonized leaves, flowers, and young fruit of pears in field experiments and significantly reduced the colonization of these tissues by IceP. syringae strains and Erwinia amylovora as compared with untreated trees.  相似文献   

14.
In this study, we examined the effects on freezing of 26 kinds of flavonoid compounds, which were randomly selected as compounds with structures similar to those of flavonoid compounds existing in deep supercooling xylem parenchyma cells (XPCs) in trees, in solutions containing different kinds of ice nucleators, including the ice nucleation bacterium (INB) Erwinia ananas, INB Xanthomonas campestris, silver iodide, phloroglucinol and unidentified airborne impurities in buffered Milli-Q water (BMQW). Cumulative freezing spectra were obtained in each solution by cooling 2 μL droplets at 0.2 °C/min by a droplet freezing assay. Freezing temperature of 50% droplets (FT(50)) was obtained from each spectra in a separate analysis with more than 20 droplets and mean FT(50) were obtained from more than five separate analyses using more than 100 droplets in total in each flavonoid. Supercooling-promoting activities (SCA) or ice nucleation-enhancing activities (INA) of these flavonoids were determined by the difference in FT(50) between control solutions without flavonoids and experimental solutions with flavonoids. In mean values, most of the compounds examined exhibited SCA in solutions containing the INB E. ananas, INB X. campestris, silver iodide, and phloroglucinol although the magnitudes of their activities were different depending on the ice nucleator. In solutions containing the INB E. ananas, 10 compounds exhibited SCAs with significant differences (p<0.05) in the range of 1.4-4.2 °C. In solutions containing silver iodide, 23 compounds exhibited SCAs with significant differences in the range of 2.0-7.1 °C. In solutions containing phloroglucinol, six compounds exhibited SCAs with significant differences in the range of 2.4-3.5 °C. In solutions containing the INB X. campestris, only three compounds exhibited SCAs with significant differences in the range of 0.9-2.3 °C. In solutions containing unidentified airborne impurities (BMQW alone), on the other hand, many compounds exhibited INA rather than SCA. In mean values, only four compounds exhibited SCAs in the range of 2.4-3.2 °C (no compounds with significant difference at p<0.05), whereas 21 compounds exhibited INAs in the range of 0.1-12.3 °C (eight compounds with significant difference). It was also shown by an emulsion freezing assay that most flavonoid glycosides examined did not affect homogeneous ice nucleation temperatures, except for a few compounds that become ice nucleators in BMQW alone. These results suggest that most flavonoid compounds affect freezing temperatures by interaction with unidentified ice nucleators in BMQW as examined by a droplet freezing assay. The results of our previous and present studies indicate that flavonoid compounds have very complex effects to regulate freezing of water.  相似文献   

15.
The supercooling point (SCP) of an insect model, the lady beetle Hippodamia convergens Guérin-Menéville (Coleoptera, Coccinellidae) was markedly elevated by treatment with aqueous suspensions of the filamentous, ice nucleation active (INA) fungi Fusarium avenaceum and slightly elevated by Fusarium acuminatum. Addition of the surfactant Tween 80 to the fungal suspensions further reduced the supercooling capacity of adult beetles. When used alone the surfactant Triton X-100 produced a greater SCP elevation than Tween 20 or Tween 80. The emulsifier gum arabic was ineffective in elevating beetle SCPs when applied alone and when added to INA fungal preparations it decreased their efficacy. Aqueous suspensions of both viable sporulating and viable pleomorphic (a permanent, degenerative, nonsporulating cultural state) forms of both fungal species were more effective in elevating the SCP than killed preparations except for the pleomorphic F. acuminatum suspension in which the killed form was slightly more active. Application of INA fungi applied in combination with surfactants may be useful in the development of methods for the biological control of overwintering freeze-susceptible insect pests by decreasing their capacity to avoid lethal freezing by supercooling.  相似文献   

16.
The frost sensitivity of Citrus sinensis in relation to the presence of biogenic ice nuclei was studied. In commercially managed citrus groves the ice nucleation active (INA) bacterium Pseudomonas syringae reached 6 × 104 colony forming units (CFU) leaf−1, a population sufficiently high to catalyze ice formation. However, a transient loss of bacterial nucleation activity was noticeable at subzero field temperatures, followed by resumption as temperatures rose. This loss was apparently due to a temporary transition of INA to ice nucleation inactive (INI) bacteria. Field application of Bordeaux mixture, copper hydroxide, streptomycin, and 2-hydroxypropylmethanethiolsulfonate (HPMTS), resulted in reduction of INA bacterial populations to detectability (≤ 102 CFU leaf−1) limits. However, the corresponding reduction in ice nucleation events in treated samples as compared to controls at nucleation temperature ≥−3°C was not as dramatic. It ranged from approximately 7% in samples treated with the bactericide HPMTS, to 35% in samples treated with chemicals possessing combined bactericidal - fungicidal action (coppers). Since a quantitative relationship exists between ice nucleation events on individual leaves and the INA bacterial populations harbored by these leaves, these results suggest the co-existence of a bacterial and a proteinaceous, yet non-bacterial ice nucleating source in citrus, both active at ≥−3°C.  相似文献   

17.
Ice nucleation studies of two beetles from sub-antarctic South Georgia   总被引:1,自引:0,他引:1  
Summary Supercooling points of adults and larvae of the coleopterans Hydromedion sparsutum and Perimylops antarcticus at South Georgia ranged from -3.0 to -5.4°C with Perimylops freezing at c.1.6°C lower than Hydromedion. Intact excised guts from adults of both species froze c. 1°C lower than the adult insects. Ice nucleating activity of homogenized faeces from larvae and adults of both species and excised guts were compared with three potential food plants using an ice nucleation spectrometer. Mean supercooling points of the insect materials at four concentrations in distilled water (range from 0.01 to 10 g 1–1) were significantly different (P<0.01) within species, and within life stages between species. Differences in the supercooling points of suspensions of Polytrichum alpinum (moss) and Usnea fasciata (lichen) were not significant. In general, differences between supercooling points were greater at the higher concentrations. Histograms of the supercooling points showed unimodal distributions particularly at high concentrations and greater dispersion with increased dilution. Spectra showing the concentration of active ice nucleators over the temperature range 0 to -20°C were developed. These showed that nucleation occurred as high as -2°C in faecal material and all insect samples nucleated above -3°C, whereas the plant materials nucleated between -4 and -5°C. The calculated number of ice nucleators for each material in suspension revealed low values (5.3 to 5.8 × 103) for the plants, but a greater abundance (1.3 × 105 to 1.3 × 106) in the insect samples. It is concluded that c.1000 active nucleators g–1 are required for ice nucleation to occur in these suspensions. Ice nucleator activity of a suspension of Hydromedion faeces was much reduced by heating to 75°C, suggesting a proteinaceous structure. These results are discussed in relation to ice nucleation in other insects, and it is concluded that bacteria may be responsible for the high nucleation temperatures, and hence poor supercooling, in these South Georgia insects. An empirical model is developed for ice nucleation spectra based on these data.  相似文献   

18.
Extracellular ice formation in frost-tolerant organisms is often initiated at specific sites by ice nucleators. In this study, we examined ice nucleation activity (INA) in the frost-tolerant plant winter rye (Secale cereale). Plants were grown at 20[deg]C, at 5[deg]C with a long day, and at 5[deg]C with a short day (5[deg]C-SD). The threshold temperature for INA was -5 to -12[deg]C in winter rye leaves from all three growth treatments. Epiphytic ice nucleation-active bacteria could not account for INA observed in the leaves. Therefore, the INA must have been produced endogenously. Intrinsic rye ice nucleators were quantified and characterized using single mesophyll cell suspensions obtained by pectolytic degradation of the leaves. The most active ice nucleators in mesophyll cell suspensions exhibited a threshold ice nucleation temperature of -7[deg]C and occurred infrequently at the rate of one nucleator per 105 cells. Rye cells were treated with chemicals and enzymes to characterize the ice nucleators, which proved to be complexes of proteins, carbohydrates, and phospholipids, in which both disulfide bonds and free sulfhydryl groups were important for activity. Carbohydrates and phospholipids were important components of ice nucleators derived from 20[deg]C leaves, whereas the protein component was more important in 5[deg]C-SD leaves. This difference in composition or structure of the ice nucleators, combined with a tendency for more frequent INA, suggests that more ice nucleators are produced in 5[deg]C-SD leaves. These additional ice nucleators may be a component of the mechanism for freezing tolerance observed in winter rye.  相似文献   

19.
In order to identify novel traits involved in epiphytic colonization, a technique for the rapid identification of bacterial mutants with quantitatively different population sizes in a natural habitat based on measurements of ice nucleation activity was developed. The threshold freezing temperatures of leaves harboring different numbers of cells of ice nucleation-active Pseudomonas syringae B728a differed substantially. While few leaves containing less than about 106 cells per g (fresh weight) froze at assay temperatures of -2.75°C or higher, nearly all leaves froze at these temperatures when population sizes of this strain increased to about 107 cells per g (fresh weight). Presumptive epiphytic fitness mutants could readily be identified as strains which initiated freezing in fewer leaves than did other strains within a given experiment. Most Tn5-induced mutants of strain B728a which conferred a low frequency of ice nucleation on inoculated bean leaves generally had a smaller population size than the parental strain at the time of the leaf freezing assay. The leaf freezing assay was capable of differentiating samples which varied by approximately three- to fivefold in mean bacterial population size.  相似文献   

20.
During May 1997 thermal tolerance, supercooling point (SCP), low and high temperature survival, and desiccation resistance were examined in field-fresh Embryonopsis halticella Eaton larvae from Marion Island. SCPs were also examined in acclimated larvae, larvae starved for seven days, larvae within their leaf mines, and in larvae exposed to ice crystals. Field-fresh larvae had a critical minimum temperature (CT(Min)) and critical maximum temperature (CT(Max)) of 0 degrees C and 39.7 degrees C, respectively. Mean SCP of field-fresh caterpillars was -20.5 degrees C and this did not change with starvation. Field-fresh larvae did not survive freezing and their lower lethal temperatures (70% mortality below -21 degrees C) and survival of exposure to constant low temperatures (100% mortality after 12hrs at -19 degrees C) indicated that they are moderately chill tolerant. SCP frequency distributions were unimodal for field-fresh larvae, but became bimodal at higher acclimation temperatures. Contact with ice-crystals caused an increase in SCP (-6.5 degrees C), but contact with the host plant had less of an effect at higher subzero temperatures. It appears that the remarkable desiccation resistance of the larvae is selected for by the absence of a boundary layer surrounding their host plant, caused by constant high winds. This suggests that the low SCPs of E. halticella larvae may have evolved as a consequence of pronounced desiccation resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号