共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
O Nureki K Suzuki M Hara-Yokoyama T Kohno H Matsuzawa T Ohta T Shimizu K Morikawa T Miyazawa S Yokoyama 《European journal of biochemistry》1992,204(2):465-472
The gene for the Glu-tRNA synthetase from an extreme thermophile, Thermus thermophilus HB8, was isolated using a synthetic oligonucleotide probe coding for the N-terminal amino acid sequence of Glu-tRNA synthetase. Nucleotide-sequence analysis revealed an open reading frame coding for a protein composed of 468 amino acid residues (Mr 53,901). Codon usage in the T. thermophilus Glu-tRNA synthetase gene was in fact similar to the characteristic usages in the genes for proteins from bacteria of genus Thermus: the G + C content in the third position of the codons was as high as 94%. In contrast, the amino acid sequence of T. thermophilus Glu-tRNA synthetase showed high similarity with bacterial Glu-tRNA synthetases (35-45% identity); the sequences of the binding sites for ATP and for the 3' terminus of tRNA(Glu) are highly conserved. The Glu-tRNA synthetase gene was efficiently expressed in Escherichia coli under the control of the tac promoter. The recombinant T. thermophilus Glu-tRNA synthetase was extremely thermostable and was purified to homogeneity by heat treatment and three-step column chromatography. Single crystals of T. thermophilus Glu-tRNA synthetase were obtained from poly(ethylene glycol) 6000 solution by a vapor-diffusion technique. The crystals diffract X-rays beyond 0.35 nm. The crystal belongs to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters of a = 8.64 nm, b = 8.86 nm and c = 8.49 nm. 相似文献
3.
tRNA(adenine-1-)-methyltransferase (EC 2.1.1.36) was isolated from the extreme thermophile Thermus thermophilus strain HB8. The specific activity of the enzyme is about 50 000 and the yield of activity more than 20%. The method of isolation consists of five steps and is valid for isolation of mg quantities of the enzyme. The purified protein preparation is practically homogeneous in SDS-gel electrophoresis, the position of the protein band corresponds to a molecular weight of 25 000. By gel filtration on Sephadex G-100 the molecular weight of the native protein was found to be 70 000. These data allow to suggest a subunit structure of the enzyme. The enzyme is highly thermostable and is most active at 80 degrees C. The only activity of the enzyme is to methylate A58 in the T psi X loop of tRNA. 相似文献
4.
5.
Preliminary crystallographic study of the phenylalanyl-tRNA synthetase from Thermus thermophilus HB8
M M Chernaya S V Korolev L S Reshetnikova M G Safro 《Journal of molecular biology》1987,198(3):555-556
Phenylalanyl-tRNA synthetase (EC 6.1.1.20) from the extreme thermophile Thermus thermophilus HB8 has been isolated and crystallized. The enzyme was found to consist of two types of subunits with molecular masses 38 X 10(3) (alpha) and 94 X 10(3) (beta) and is likely to be a tetrameric protein with a molecular mass of about 260 X 10(3) (alpha 2 beta 2). Crystals of phenylalanyl-tRNA synthetase were grown by the hanging-drop technique at 4 degrees C in the presence of ammonium sulfate. Trigonal crystals, space group P3(1)21, with cell dimensions a = b = 176 A and c = 142 A (1 A = 0.1 nm), are suitable for medium-resolution X-ray analysis. 相似文献
6.
J C Quintela E Pittenauer G Allmaier V Arn M A de Pedro 《Journal of bacteriology》1995,177(17):4947-4962
The composition and structure of peptidoglycan (murein) extracted from the extreme thermophilic eubacterium Thermus thermophilus HB8 are presented. The structure of 29 muropeptides, accounting for more than 85% of total murein, is reported. The basic monomeric subunit consists of N-acetylglucosamine-N-acetylmuramic acid-L-Ala-D-Glu-L-Orn-D-Ala-D-Ala, acylated at the delta-NH2 group of Orn by a Gly-Gly dipeptide. In a significant proportion (about 23%) of total muropeptides, the N-terminal Gly is substituted by a residue of phenylacetic acid. This is the first time phenylacetic acid is described as a component of bacterial murein. Possible implications for murein physiology and biosynthesis are discussed. Murein cross-linking is mediated by D-Ala-Gly-Gly peptide cross-bridges. Glycan chains are apparently terminated by (1-->6) anhydro N-acetylmuramic acid residues. Neither reducing sugars nor murein-bound macromolecules were detected. Murein from T. thermophilus presents an intermediate complexity between those of gram-positive and gram-negative organisms. The murein composition and peptide cross-bridges of T. thermophilus are typical for a gram-positive bacterium. However, the murein content, degree of cross-linkage, and glycan chain length for T. thermophilus are closer to those for gram-negative organisms and could explain the gram-negative character of Thermus spp. 相似文献
7.
In the previous paper [Xu, J., Oshima, T., & Yoshida, M. (1990) J. Mol. Biol. 215, 597-606], we reported that phosphofructokinase from Thermus thermophilus is allosterically inhibited by phosphoenolpyruvate, which induces dissociation of the active four-subunit enzyme into an inactive two-subunit form. When T. thermophilus was cultured in a glucose-containing medium, another phosphofructokinase (PFK2) appeared in addition to the reported one (PFK1). The molecular weights of the native PFK2 molecule (132,000) and its subunit (34,500), which are slightly smaller than those of PFK1, suggest that PFK2 is also composed of four identical subunits. However, the hyperbolic kinetics and molecular form of PFK2 are not affected at all by phosphoenolpyruvate. The NH2-terminal amino acid sequences of subunits of PFK1 and PFK2 revealed that they are composed of very similar but different polypeptides. 相似文献
8.
K Watanabe Y Kuchino Z Yamaizumi M Kato T Oshima S Nishimura 《Journal of biochemistry》1979,86(4):893-905
The nucleotide sequence of formylmethionine tRNA from an extreme thermophile, Thermus thermophilus HB8, was determined by a combination of classical methods using unlabeled samples to determine the sequences of the oligonucleotides of RNase T1 and RNase A digests and a rapid sequencing gel technique using 5'-32P labeled samples to determine overlapping sequences. Formylmethionine tRNA from T. thermophilus is composed of two species, tRNAf1Met and tRNAf2Met. Their nucleotide sequences are almost identical, and are also almost identical with that of E. coli tRNAfMet, except for slight modifications and replacements. Both species have modifications at three points which do not exist in E. coli tRNAfMet: 2'-O-methylation at G19, N-1-methylation at A59 and 2-thiolation at T55. Moreover U51 in E. coli tRNAfMet is replaced by C51 in both species, so that a G-C pair is formed between this C51 and G65. tRNAf2Met has a reversed G-C pair at positions 52 and 64 compared with those in tRNAf1Met and E. coli tRNAfMet. Other regions are mostly the same as those in all prokaryotic initiator tRNAs so far reported. The thermostability of these thermophile initiator tRNAs is discussed in relation to their unique modifications. 相似文献
9.
H Hori T Suzuki K Sugawara Y Inoue T Shibata S Kuramitsu S Yokoyama T Oshima K Watanabe 《Nucleic acids symposium series》2000,(44):167-168
For the purpose of identification of the gene for Thermus thermophilus tRNA (Gm18) methyltransferase [tRNA (guanosine-2'-)-methyltransferase, EC 2.1.1.34], the purified enzyme from native source was analyzed by the peptide-mass mapping. The target gene encoded the amino acid sequences of the obtained peptides was searched in data from Thermus thermophilus HB8 genome-sequencing project. We found the target gene AB05130, which was expected to encode a protein composed of 194 amino acid residues and the molecular mass of this protein was calculated as 22083. The recombinant protein was expressed in E. coli as an active form. The Gm18 formation activity of the purified recombinant protein was confirmed by in vitro methylation followed by two-dimensional thin layer chromatography and Liquid Chromatography/Mass Spectrum analysis of substrate tRNA. 相似文献
10.
L-Cysteine is an important amino acid in terms of its industrial applications. The biosynthesis of L-cysteine in enteric bacteria is regulated through the feedback inhibition by L-cysteine of L-serine O-acetyltransferase (SAT), a key enzyme in L-cysteine biosynthesis. We recently found that L-cysteine is overproduced in Escherichia coli strains expressing a gene encoding feedback inhibition-insensitive SAT. Further improvements in L-cysteine production are expected by the use of SAT with high stability. We report here the sat1 gene encoding SAT of an extreme thermophile, Thermus thermophilus HB8. The sat1 gene was cloned and overexpressed in E. coli cells based on the genome sequence in T. thermophilus HB8. The predicted amino acid sequence consists of 295 amino acids and is homologous to other O-acetyltransferase members. In particular, the carboxyl-terminal region shares approximately 30% identities with SATs found in bacteria and plants, despite showing only about 15% identity in the overall sequence. Enzymatic analysis and an atomic absorption study of the purified recombinant proteins revealed that the enzyme is highly activated by Co(2+) or Ni(2+), and contains Zn(2+) and Fe(2+). These results indicate that the T. thermophilus SAT is a novel type of enzyme different from other members of this protein family. 相似文献
11.
L Reshetnikova M Chernaya V Ankilova O Lavrik M Delarue J C Thierry D Moras M Safro 《European journal of biochemistry》1992,208(2):411-417
The three-dimensional structure of the heterodimeric alpha 2 beta 2 enzyme phenylalanyl-tRNA synthetase from Thermus thermophilus HB8 has been determined by X-ray crystallography, using the multiple-isomorphous-replacement method at 0.6 nm resolution. Trigonal crystals of space group P3(2)21 have cell dimensions a = b = 17.6 nm and c = 14.2 nm. Assuming one heterodimeric molecule/asymmetric unit, the ratio of unit cell volume/molecular mass was V = 0.00244 nm3/Da, which is in the middle of the range normally observed. However, after a rotation-function calculation and measurement of the density of the native crystals, we postulate the existence of only the alpha beta dimer in the asymmetric units. This implies 73% solvent content in the unit cell. Three heavy-atom derivatives [K2PtCl4, KAu(CN)2 and Hg(CH3COO)2] and the solvent-flattening procedure were used for electron-density-map calculations. This map confirmed our hypothesis and revealed a remarkably large space filled by solvent, with alpha beta dimer only in the asymmetric unit. The phenylalanyl-tRNA synthetase from T. thermophilus molecule has a 'quasi-linear' subunit organization. As can be concluded at this level of resolution, there is no contact between small alpha subunits in the functional heterodimer. 相似文献
12.
Argininosuccinate synthetase catalyzes the ATP-dependent condensation of a citrulline with an aspartate to give argininosuccinate. The three-dimensional structures of the enzyme from Thermus thermophilus HB8 in its free form, complexed with intact ATP, and complexed with an ATP analogue (adenylyl imidodiphosphate) and substrate analogues (arginine and succinate) have been determined at 2.3-, 2.3-, and 1.95-A resolution, respectively. The structure is essentially the same as that of the Escherichia coli argininosuccinate synthetase. The small domain has the same fold as that of a new family of "N-type" ATP pyrophosphatases with the P-loop specific for the pyrophosphate of ATP. However, the enzyme shows the P-loop specific for the gamma-phosphate of ATP. The structure of the complex form is quite similar to that of the native one, indicating that no conformational change occurs upon the binding of ATP and the substrate analogues. ATP and the substrate analogues are bound to the active site with their reaction sites close to one another and located in a geometrical orientation favorable to the catalytic action. The reaction mechanism so far proposed seems to be consistent with the locations of ATP and the substrate analogues. The reaction may proceed without the large conformational change of the enzyme proposed for the catalytic process. 相似文献
13.
The cytochrome oxidase (EC 1.9.3.1) of HB8 was isolated from the membrane fraction, and was highly purified. The oxidase contained heme and heme as the prosthetic groups. The purified preparation showed a single band in polyacrylamide gel electrophoresis, and three major polypeptides with apparent molecular weights of 52,000, 37,000 and 29,000 were observed in the presence of sodium dodecyl sulfate. The enzyme reacted rapidly with cytochrome c-552. The oxidation of cytochrome -555,549 by the enzyme was very slow, and was stimulated by the addition of cytochrome -552. The enzyme was highly stable to heat. 相似文献
14.
Saho Kamada Takahiro Okugochi Kaori Asano Ryuta Tobe Hisaaki Mihara Michiko Nemoto 《Bioscience, biotechnology, and biochemistry》2016,80(10):1970-1972
Biosynthesis of selenocysteine-containing proteins requires monoselenophosphate, a selenium-donor intermediate generated by selenophosphate synthetase (Sephs). A non-radioactive assay was developed as an alternative to the standard [8-14C] AMP-quantifying assay. The product, AMP, was measured using a recombinant pyruvate pyrophosphate dikinase from Thermus thermophilus HB8. The KM and kcat for Sephs2-Sec60Cys were determined to be 26 μM and 0.352 min?1, respectively. 相似文献
15.
Method of isolation of phenylalanyl-tRNA synthetase from Thermus thermophilus HB8 is described, including chromatography on DEAE-sepharose, ammonium sulfate fractionation, hydrofobic chromatography on Toyopearl, gel filtration on ultrogel AcA-34, chromatography on phenylalanylaminohexyl-sepharose and heparine-sepharose. Yield of the purified enzyme was 10 mg from 1 kg of T. thermophilus cells. The enzyme is found to consist of two types of subunits with molecular masses 92 and 36 kDa and is likely to be a tetramer protein with molecular mass 250 kDa. Crystals of phenylalanyl-tRNA synthetase suitable for X-ray structural studies have been obtained. 相似文献
16.
Anastasia A. Pantazaki Christos P. Papaneophytou Agathi G. Pritsa Maria Liakopoulou-Kyriakides Dimitrios A. Kyriakidis 《Process Biochemistry》2009,44(8):847-853
The thermophilic bacterium Thermus thermophilus HB8 is able to utilize lactose from whey-based media for the biosynthesis of polyhydroxyalkanoates (PHAs) under nitrogen limitation. T. thermophilus can utilize both, glucose and galactose, the products of lactose hydrolysis. When T. thermophilus HB8 was grown in culture media containing 24% (v/v) whey, PHA was accumulated up to 35% (w/w) of its biomass after 24 h of cultivation. The effect of initial phosphate concentration on the PHA production was also investigated. Using an initial phosphate concentration of 50 mM the PHA accumulation was enhanced. Analysis of the produced PHA from T. thermophilous HB8 grown in whey-based media revealed a novel heteropolymer consisting of the short chain length 3-hydroxyvalerate (3HV; 38 mol%) and the medium chain length, 3-hydroxyheptanoate (3HHp; 9.89 mol%), 3-hydroxynanoate (3HN; 16.59 mol%) and 3-hydroxyundecanoate (3HU; 35.42 mol%). Despite the low molecular weight of the produced PHA by T. thermophilus, whey could be an excellent substrate for the production of heteropolymers with unique properties. 相似文献
17.
Functions of isolated domains of methionyl-tRNA synthetase from an extreme thermophile, Thermus thermophilus HB8 总被引:3,自引:0,他引:3
Methionyl-tRNA synthetase (MetRS, 2 X 75 kDa) was purified to homogeneity from an extreme thermophile, Thermus thermophilus HB8. The polypeptide chain of MetRS was cleaved by limited digestion with trypsin into four domains: T1 (29 kDa), T2 (23 kDa), T3 (14.5 kDa), and T4 (7.5 kDa), which were aligned in that order. MetRS was also cleaved into similar fragments with a variety of other proteases. Domains T1, T2, T3, and T4 were isolated by column chromatography. "Tandem domain" T1-T2 (56 kDa) is fully active in the aminoacylation of tRNA and is further cleaved with trypsin into domains T1 and T2. Domain T1 is the smallest aminoacylation unit so far reported. Domain T2 (enzymatically inactive) interacts with tRNAMetf, as found by UV-induced cross-linking. Isolated domain T3 forms a dimer and is responsible for the dimer assembly of two protomers in MetRS. Domain T4 is a flexible tail of MetRS. These domains, in particular T1 and T2, will be important for detailed structure analyses in relation to aminoacylation activity. 相似文献
18.
19.
Seto A Murayama K Toyama M Ebihara A Nakagawa N Kuramitsu S Shirouzu M Yokoyama S 《Proteins》2005,58(1):235-242
Dephosphocoenzyme A kinase (DCK) catalyzes phosphorylation in the final step of coenzyme A (CoA) biosynthesis. In this phosphorylation process, domain movements play a very important role. To reveal the structural changes induced by ligand binding, we determined the crystal structure of DCK from Thermus thermophilus HB8 by the multiwavelength anomalous dispersion method at 2.8 A. The crystal structure includes three independent protein molecules in the asymmetric unit: One is a liganded form and the others are unliganded. The topology shows a canonical nucleotide-binding protein possessing the P-loop motif. A structure homology search by DALI revealed the similarity of the DCKs from T. thermophilus HB8, Haemophilus influenzae, and Escherichia coli. Structural comparisons between the liganded and unliganded forms of DCK from T. thermophilus HB8 indicated domain movements induced by adenosine triphosphate (ATP) binding. For the domain movements, proline residues confer flexibility at the domain linkages. In particular, Pro91 plays an important role in moving the CoA domain. 相似文献
20.
rRNA(Gm)methyltransferase from an extreme thermophile, Thermus thermophilus HB 27 specifically methylates the 2'-OH of the ribose ring of G18 in the invariant G18-G19 sequence in the D loop of tRNA. The interaction site on tRNA was presumed to be the D loop and stem structure. Destruction of tertiary structure of tRNA caused by heat resulted in a great decrease in the acceptor activity of methyl group. It was suggested by CD measurement that a conformational change of tRNA occurs when it forms an equimolar complex with Gm-methylase. 相似文献