首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Purification and specificity of antibodies to adenosine.   总被引:4,自引:0,他引:4  
J Lavayre  M Leng 《Biochimie》1977,59(1):33-42
Antibodies to adenosine were elicited in rabbits by immunization with bovine serum albumin-adenosine conjugate. The antibodies were purified and fractionated on two affinity columns (Sepharose-oligo(A) and Sepharose-AMP). Two families of antibodies have been obtained. The antibodies purified on the Sepharose-oligo(A) column react with poly(A) while those purified on the Sepharose-AMP column do not, as shown by gel diffusion. The association constants for the binding of Fab fragments or IgG purified on the Sepharose-oligo(A) column and several haptens were deduced from dialysis equilibrium, fluorescence quenching and displacement of AMP-fluorescein conjugate. The antibodies mainly recognize adenine, and the ribose or the phosphate group of (or AMP derivatives) do not play a critical role in the interaction. Thermodynamic parameters for adenosine-Fab fragments complexes have been determined deltaH degrees = 16 kcal/mole and deltaS degrees = - 15 cal. degree-1 mole-1. Circular dichroism studies indicate that about three nucleotide residues penetrate the binding site of Fab fragments.  相似文献   

2.
This report investigates the isotope and binding site heterogeneity of IgG anti-azophenylarsonate (ARS) monoclonal antibodies derived from splenic fragment cultures of nonimmune and immune A/J mice. By using five arsanilic acid derivatives in a hapten inhibition assay to determine fine specificity, the secondary ARS-specific repertoire was found to be extremely heterogeneous, with 52 unique patterns among the 81 antibodies analyzed. CRIA+ and CRIA+/- clonotypes were as heterogeneous as CRIA- antibodies, but a majority of CRIA+/- clones maintained a characteristic relative affinity for two of the haptens, p-arsanilic acid (p-ARS) and p-azobenene arsonic acid-N-tyrosine (ABA-tyr), which was identical to the prototype CRIA+ hybridoma protein R16.7. We also observed that the average relative affinity of CRIA- antibodies from immunized donors was higher than nonimmune mice with respect to p-ARS and ABA-tyr, and that there was a further increase in avidity to ABA-tyr over time after immunization. In contrast, no affinity maturation occurred among the CRIA+ and CRIA+/- clones. Rare antibodies were also identified within the nonimmune repertoire that had higher relative affinities than R16.7. Despite this, a greater proportion of CRIA+ and CRIA+/- clones produced IgG antibody in vitro. Thus, the predominance of CRIA+ antibodies in the ARS-specific immune repertoire and the preferential differentiation of CRIA+ precursor cells to IgG secretors cannot be entirely explained by the avidity of this clonotype family for p-ARS or ABA-tyr.  相似文献   

3.
M J Ricardo  J J Cebra 《Biochemistry》1981,20(7):1989-1996
Anti-p-azobenzenearsonate (ARS) antibodies of IgG1 and IgG2 isotypes produced in inbred strain 13 and strain 2 guinea pigs were affinity labeled with N-(bromoacetyl)-3-[(p-arsonophenyl)azo]-L-tyrosine (BAAT) or N-(bromoacetyl)-p-arsanilic acid (BAA). BAAT was shown to modify approximately 50% of the binding sites specifically and BAA approximately 30%. Both reagents preferentially modified residues in the heavy (H) chain to the extent that it contained over 80% of the affinity label associated with the native molecule. At least 80% of label borne by the variable domain of the H chain (VH) was found in the second hypervariable region (Hv2). BAAT labeled all anti-ARS antibodies exclusively at position N-59, which contains a lysyl residue. BAA labeled predominantly tyrosine at N-57 and, to a lesser extent, lysine-59 and tyrosine-50. Comparison of Hv2 sequences in anti-ARS and in antibodies reactive with other haptens has shown that tyrosine at N-50 and N-57 as well as lysine at N-59 is distinctive of antibodies with anti-ARS specificity, thus implying their involvement in antigen binding. The predominant sequence of Hv2 was identical in anti-ARS IgG1 and IgG2 molecules induced in either inbred guinea pig strain following either carrier priming or conventional immunization. Although limited variability does occur among the various populations of anti-ARS antibodies in certain residue positions in Hv2, no significant differences in the binding affinities or in the indexes of heterogeneity were seen among the various kinds of anti-ARS antibodies.  相似文献   

4.
The thermodynamic quantities of the anti-dinitrophenyl antibody-hapten interaction are reported for rabbit, goat, and guinea pig antibodies. Rabbit and goat antibodies had similar exothermic enthalpy changes for their reaction with 2,4-dinitrophenyl-L-lysine (-13.9 and -14.8 kcal/mol, respectively). The enthalpy change with guinea pig antibody was much less exothermic (-8.7 kcal/mol), and this value was the same for two guinea pig antibody preparations that differed in affinity by almost two orders of magnitude. A heterogeneous goat anti-dinitrophenyl antibody preparation was fractionated on a molecular sieve column in the presence of a bivalent ligand, a procedure that has been reported to separate antibodies according to differences in the depth of interaction with the ligand. The relationship of these differences in apparent site depth to changes in interactions with the hapten tail was examined by comparing the affinities of various fractions for two haptens. The results show that the presumed deeper sites have stronger interactions with the hapten tail. These studies suggest that the heterogeneity of anti-dinitrophenyl antibodies with respect to affinity results from differences in entropy driven lysyl side-chain interactions which arise from a heterogeneity in antigen binding site depth.  相似文献   

5.
Three monoclonal antibodies (mAbs) (T6, U5, and U6) against prolactin (PRL) receptors in rat liver were studied in the rat lymphoma lactogen-dependent (Nb2-11C) and autonomous (Nb2-SP) cell lines. The mAbs had strong affinity for lactogen receptors (Ka = 12-14 nM-1), similar to that of human growth hormone (hGH) which is a lactogenic hormone. T6 and hGH competed for the same binding site, while U5 and U6 interacted with another epitope. The 125I-hGH-receptor complex could be immunoprecipitated by either U5 or U6, but not by T6. Affinity labeling and immunoblotting revealed that hGH and U6 bind to a protein of 63-65 kDa. T6, U5, and U6 were mitogenic in Nb2-11C cells but their respective potencies were 185-, 70-, and 4700-fold lower than that of hGH. Anti-mouse IgG enhanced the mitogenic effect of all three mAbs and almost completely abolished the differences between them, although their mitogenic activity was still 60-120-fold lower than hGH. Des-13-hGH, a competitive antagonist of hGH which hardly effected the binding of 125I-U5, inhibited the U5-stimulated proliferation of Nb2-11C cells in a noncompetitive manner, indicating that simultaneous binding of both ligands fixed the receptor in a nonactive conformation. A Fab fragment of T6 was not mitogenic, and inhibited the hGH-induced mitogenesis in a competitive manner, but its mitogenicity could be restored by anti-mouse IgG. We suggest that the dimerization or oligomerization of the lactogen receptor in Nb2-11C cells is an obligatory step in the transduction of the mitogenic signal. It may be induced by binding of the mAb to a site, which can be either identical or may even be distinct from that which binds the lactogenic hormone.  相似文献   

6.
Conventional anti-hapten antibodies typically bind low-molecular weight compounds (haptens) in the crevice between the variable heavy and light chains. Conversely, heavy chain-only camelid antibodies, which lack a light chain, must rely entirely on a single variable domain to recognize haptens. While several anti-hapten VHHs have been generated, little is known regarding the underlying structural and thermodynamic basis for hapten recognition. Here, an anti-methotrexate VHH (anti-MTX VHH) was generated using grafting methods whereby the three complementarity determining regions (CDRs) were inserted onto an existing VHH framework. Thermodynamic analysis of the anti-MTX VHH CDR1-3 Graft revealed a micromolar binding affinity, while the crystal structure of the complex revealed a somewhat surprising noncanonical binding site which involved MTX tunneling under the CDR1 loop. Due to the close proximity of MTX to CDR4, a nonhypervariable loop, the CDR4 loop sequence was subsequently introduced into the CDR1-3 graft, which resulted in a dramatic 1000-fold increase in the binding affinity. Crystal structure analysis of both the free and complex anti-MTX CDR1-4 graft revealed CDR4 plays a significant role in both intermolecular contacts and binding site conformation that appear to contribute toward high affinity binding. Additionally, the anti-MTX VHH possessed relatively high specificity for MTX over closely related compounds aminopterin and folate, demonstrating that VHH domains are capable of binding low-molecular weight ligands with high affinity and specificity, despite their reduced interface.  相似文献   

7.
T cell activation induced by mouse anti-CD3 mAb has shown to be dependent on the Ig isotype of these antibodies. A study of isotype dependency of human antibodies, however, seems more relevant to human effector systems, especially in view of the availability of humanized antibodies for clinical applications. We constructed a panel of mouse and mouse/human chimeric anti-CD3 mAb, which differ only in their CH region and hence have identical binding sites and affinity. By using these antibodies, we now studied their ability to induce T cell proliferation in human PBMC and analyzed the classes of IgG FcR involved in these responses. The human (h)IgG1, hIgG3, and hIgG4, as well as mouse (m)IgG2a and mIgG3 anti-CD3 mAb induced an Fc gamma RI (CD64)-dependent T cell proliferation in all donors. Activation with hIgG2 and mIgG1 anti-CD3 mAb was observed to be mediated via the low affinity Fc gamma RII (CD32). It was found that leukocytes in a normal donor population display a functional polymorphism with respect to hIgG2 anti-CD3 responsiveness. This polymorphism was found to be inversely related to the previously defined Fc gamma RII-polymorphism to mIgG1 anti-CD3 mAb. Monocytes expressing the Fc gamma RII mIgG1 low responder (LR) allele support hIgG2 anti-CD3 induced T cell proliferation efficiently, whereas cells homozygous for the Fc gamma RII mIgG1 high responder (HR) allele do not. This observation could be confirmed in T cell activation studies using hFc gamma RIIa-transfected mouse fibroblasts, expressing either the mIgG1 anti-CD3 HR or LR Fc gamma RII-encoding cDNA.  相似文献   

8.
The preceding paper [Dam, T. K., Roy, R., Pagé, D., and Brewer, C. F. (2002) Biochemistry 41, 1351-1358] demonstrated that Hill plots of isothermal titration microcalorimetry (ITC) data for the binding of di-, tri-, and tetravalent carbohydrate analogues possessing terminal 3,6-di-O-(alpha-D-mannopyranosyl)-alpha-D-mannopyranoside residues to the lectin concanavalin A (ConA) show increasing negative cooperativity upon binding of the analogues to the lectin. The present study demonstrates "reverse" ITC experiments in which the lectin is titrated into solutions of di- and trivalent analogues. The results provide direct determinations of the thermodynamics of binding of ConA to the individual epitopes of the two multivalent analogues. The n values (number of binding sites per carbohydrate molecule) derived from reverse ITC demonstrate two functional binding epitopes on both the di- and trivalent analogues, confirming previous "normal" ITC results with the two carbohydrates [Dam, T. K., Roy, R., Das, S. K., Oscarson, S., and Brewer, C. F. (2000) J. Biol. Chem. 275, 14223-14230]. The reverse ITC measurements show an 18-fold greater microscopic affinity constant of ConA for the first epitope of the divalent analogue versus its second epitope and a 53-fold greater microscopic affinity constant of ConA binding to the first epitope of the trivalent analogue versus its second epitope. The data also demonstrate that the microscopic enthalpies of binding of the two epitopes on the di- and trivalent analogues are essentially the same and that differences in the microscopic K(a) values of the epitopes are due to their different microscopic entropies of binding values. These findings are consistent with the increasing negative Hill coefficients of these analogues binding to ConA in the previous paper.  相似文献   

9.
Relative differences in the active site environment of a monoclonal antibody when covalently bound to two isomeric haptens were studied using fluorescence quenching and lifetime measurements. Murine monoclonal antibody 4-4-20, a well-characterized high affinity antifluorescein antibody, served as the model IgG protein. Isomeric haptenic probes comparatively studied were fluorescein-5-isothiocyanate (FITC I, the immunogen) and fluorescein-6-isothiocyanate (FITC II). In kinetic binding studies, the association rate for the interaction of 4-4-20 with FITC I was greater than 2,000 times faster than the reaction with FITC II. Fluorescence lifetimes for FITC I covalently bound to 4-4-20 were 3.89 ns and 0.37 ns, indicative of hapten bound outside and inside the active site, respectively. Fluorescence lifetime for FITC II within the active site was indistinguishable from bound FITC I, indicating that interactions with active site residues which resulted in a decreased lifetime were similar for both isomers. A decreased lifetime for active site bound FITC I was consistent with the 90-95% quenching of fluorescein fluorescence. Dynamic fluorescence quenching experiments with iodide and FITC I in the active site showed no solvent accessibility, whereas bound FITC II showed significant accessibility. These results suggest that the difference in bond angle which accompanies binding of isomer II relative to isomer I within the active site probably leads to steric constraints resulting in a more open configuration of the 4-4-20 active site.  相似文献   

10.
Tumor-associated antibodies of human IgG1 subclass were eluted from cell-surface antigens of human carcinoma cells and studied by differential scanning calorimetry and binding to local conformational probes, protein A from Staphylococcus aureus and a monoclonal antibody targeted to the CH2 domain of the Fc fragment. At pH 2.0-7.0, we observed virtually identical enthalpies of thermal unfolding for IgG1 from normal human sera and tumor-associated IgG1. The exact values of calorimetric enthalpy (h) at pH 7.0 were 6.1 and 6.2-6.3 cal/g for IgG1 from normal serum and IgG1 from carcinoma cells, respectively. The affinity constants of protein A binding to the CH2–CH3 domain interface demonstrated differences between serum IgG1 and tumor associated IgG1 that did not exceed 3-8-fold. The binding affinity toward the anti-CH2 monoclonal antibody determined for serum IgG1 and IgG1 from carcinoma cells differed not more than 2.5-fold. The thermodynamic parameters of IgG1 from carcinoma cells strongly suggest that protein conformational stability was essentially unaltered and that the Fc fragment of the tumor-derived IgG1 preserved its structural integrity.  相似文献   

11.
Two distinct spontaneous variants of the murine anti-digoxin hybridoma 26-10 were isolated by fluorescence-activated cell sorting for reduced affinity of surface antibody for antigen. Nucleotide and partial amino acid sequencing of the variant antibody variable regions revealed that 1 variant had a single amino acid substitution: Lys for Asn at heavy chain position 35. The second variant antibody had 2 heavy chain substitutions: Tyr for Asn at position 35, and Met for Arg at position 38. Mutagenesis experiments confirmed that the position 35 substitutions were solely responsible for the markedly reduced affinity of both variant antibodies. Several mutants with more conservative position 35 substitutions were engineered to ascertain the contribution of Asn 35 to the binding of digoxin to antibody 26-10. Replacement of Asn with Gln reduced affinity for digoxin 10-fold relative to the wild-type antibody, but maintained wild-type fine specificity for cardiac glycoside analogues. All other substitutions (Val, Thr, Leu, Ala, and Asp) reduced affinity by at least 90-fold and caused distinct shifts in fine specificity. The Ala mutant demonstrated greatly increased relative affinities for 16-acetylated haptens and haptens with a saturated lactone. The X-ray crystal structure of the 26-10 Fab in complex with digoxin (Jeffrey PD et al., 1993, Proc Natl Acad Sci USA 90:10310-10314) reveals that the position 35 Asn contacts hapten and forms hydrogen bonds with 2 other contact residues. The reductions in affinity of the position 35 mutants for digoxin are greater than expected based upon the small hapten contact area provided by the wild-type Asn. We therefore performed molecular modeling experiments which suggested that substitution of Gln or Asp can maintain these hydrogen bonds whereas the other substituted side chains cannot. The altered binding of the Asp mutant may be due to the introduction of a negative charge. The similarities in binding of the wild-type and Gln-mutant antibodies, however, suggest that these hydrogen bonds are important for maintaining the architecture of the binding site and therefore the affinity and specificity of this antibody. The Ala mutant eliminates the wild-type hydrogen bonding, and molecular modeling suggests that the reduced side-chain volume also provides space that can accommodate a congener with a 16-acetyl group or saturated lactone, accounting for the altered fine specificity of this antibody.  相似文献   

12.
P Br?let  H M McConnell 《Biochemistry》1977,16(6):1209-1217
Three different phospholipid haptens have been synthesized, in which the haptenic group is the paramagnetic nitroxide (spin-label) group. These lipid haptens differ from one another in the length and composition of the molecular chain linking the 2,2,6,6-tetramethylpiperidinyl-N-oxy moiety to the phosphodiester group of the lipid. These lipid haptens have been incorporated at low molar concentrations (0.01 to 0.5 mol %) in liposomes containing various proportions of cholesterol and dipalmitoylphosphatidylcholine (DPPC). A study has been made of specific antinitroxide IgG (and Fab) binding to these liposomes, and the fixation of complement. From these studies we conclude: (a) For lipid haptens whose possible extension above the bilayer plane is limited (e.g., approximately 10-20 A), antibody binding and complement fixation depend strongly on the hapten structure and host lipid composition, because of steric limitations on the accessibility of lipid haptens to the binding sites in the protein. (b) Complement fixation by specific IgG antibodies directed against the nitroxide group as part of a lipid hapten depends strongly on the lateral mobility of the lipid hapten when its molar concentration in the plane of the membrane is of the order of 0.1 mol % or less. It is likely that this conclusion applies to many lipid haptens, and possibly other membrane components. (c) The inclusion of cholesterol in lipid membranes has at least two distinct effects on complement fixation involving lipid haptens. Through a steric effect on bilayer structure (probably involving lateral molecular ordering) cholesterol in phosphatidylcholine bilayers can enhance hapten exposure to antibody binding sites, enhance antibody binding, and thereby enhance complement fixation. It is likely that cholesterol also affects complement fixation at low hapten concentrations through a modification of membrane fluidity.  相似文献   

13.
V Raso  B D Stollar 《Biochemistry》1975,14(3):584-591
Stable analogs of the crucial Schiff base intermediate of enzymatic and nonenzymatic pyridoxal phosphate catalysis have been used as haptens for induction of specific antibodies. N-(5-phosphopyridoxyl)-3'-amino-L-tyrosine and its conformationally distinct cyclized derivative resemble the Schiff base formed upon mixing tyrosine with pyridoxal phosphate. These compounds were covalently coupled to a protein carrier via the 3'-amino group so as to confer a prescribed orientation, with the coenzyme region farthest removed from the carrier. A third antigen, with the phosphopyridoxyl group alone as the hapten, was prepared by linkage of pyridoxal phosphate directly to free amino groups on the carrier protein. Antibodies elicited for each determinant were purified by means of appropriate affinity columns. Antibody heterogeneity was observed in that different species could be separated from a given serum by sequential elution from the affinity columns with 1 M sodium phosphate buffers of pH 7.6, 5.2, 2.6 and 1.5. In assays of quantitative precipitation, inhibition of precipitation, equilibrium dialysis, and fluorescence quenching, antibodies to the phosphopyridoxyltyrosine haptens showed specificity for the phosphorylated form of the coenzyme and binding activity for both the coenzyme and tyrosine portions of the hapten. Antibodies to the phosphopyridoxyl groups alone did not display a similar reactivity toward the tyrosine portion of the complex haptens. The cyclic and noncyclic conformations of the hapten were serologically distinct, as antibody to each reacted preferentially with the homologous form.  相似文献   

14.
The binding of Strep 9, a mouse monoclonal antibody (mAb) of the IgG3 subclass directed against the cell-wall polysaccharide of Group A Streptococcus (GAS), has been characterized. The intact antibody and proteolytic fragments of Strep 9 bind differently to GAS: the intact mAb and F(ab)2' have greater affinity for the carbohydrate epitope than the monomeric Fab or F(ab)'. A mode of binding in which Strep 9 binds bivalently to portions of the polysaccharide on adjacent chains on GAS is proposed. A competitive ELISA protocol using a panel of carbohydrate inhibitors shows that the branched trisaccharide, beta-D-GlcpNAc-(1-->3)-[alpha-L-Rhap-(1-->2)]-alpha-L-Rhap, and an extended surface are key components of the epitope recognized by Strep 9. Microcalorimetry measurements with the mAb and two synthetic haptens, a tetrasaccharide and a hexasaccharide, show enthalpy-entropy compensation as seen in other oligosaccharide-protein interactions. Molecular modeling of the antibody variable region by homology modeling techniques indicates a groove-shaped combining site that can readily accommodate extended surfaces. Visual docking of an oligosaccharide corresponding to the cell-wall polysaccharide into the site provides a putative model for the complex, in which a heptasaccharide unit occupies the site and the GlcpNAc residues of two adjacent branched trisaccharide units occupy binding pockets within the groove-shaped binding site.  相似文献   

15.
Serum antibody and cellular immune response in mice to dextran B512.   总被引:4,自引:0,他引:4  
Serum antibodies to dextran started to appear 3 days after immunization of C57BL/6 mice. Synthesis of IgM antibodies was followed by IgG3 and IgGA. Other immunoglobulin classes (IgG1, IgG2b, and IgG2a) were very low or absent. The immune response to dextran was also thymus independent with regard to IgG3 and IgA synthesis as demonstrated by the use of nu/nu mice. CBA and C57BL/6 mice were high responders to dextran with regard to IgM synthesis. C57BL/6 mice produced high levels of IgG3 and IgA antibodies, whereas CBA, A/J, and A.TL only synthesized IgM antibodies. A/J and A.TL strains were most frequently low responders with regard to IgM synthesis and CBA/N mice were completely nonresponders with regard to all immunoglobulin classes. The ability to produce anti-dextran antibodies increased with age in high responder strains. This was most pronounced for IgG3 and IgA antibodies, which reached adult levels 3 months after birth. The affinity of anti-dextran antibodies was high and homogeneous in antisera from C57BL/6 mice. Preimmune matural antibodies and antibodies from immunized low responder strains had a low and variable affinity for dextran.  相似文献   

16.
17.
Association constants, enthalpies, and stoichiometries of Bowman-Birk soybean inhibitor for trypsin and alpha-chymotrypsin were measured in the pH range 4-8 at 25 degrees, 0.01 M Ca2+. The results are quoted in terms of moles of protease active sites, from active site titration. Enthalpies were obtained from calorimetry. The inhibitor was modified by carboxyl group modification, and by tryptic and chymotryptic attack. Association thermodynamics and stoichiometries of the modified inhibitors with both proteases were also determined. There is one independent site for each protease on the inhibitor protein. Modification decreases association to some extent, but does not appear to change stoichiometry or protease binding site independency. In the pH 4 region the association enthalpies are endothermic, of the order 6 kcal/mol for both trypsin and chymotrypsin. With increasing pH, the enthalpies decrease and become exothermic at pH 8 for chymotrypsin. Positive entropies, 50 cal mol-1 deg-1, occur at pH 4-5. They decrease as pH increases, but are always positive in sign. The observed to accompany the overall reaction, such as H+ transfer steps. The enthalpies and entropies probably compensate over the pH range 4-8, with a characteristic temperature of 390 plus or minus 30 degrees K. Estimates were made of the macromolecular Coulomb charge products in inhibitor-protease interaction. These range from about +5 to -60, over pH range 4-8, depending on the protease. Although intermolecular Coulombic forces cannot be easily delineated at the specific side chain level, they may operate at the macromolecule level.  相似文献   

18.
The objects of this study were the equine IgG and IgG(T) classes of antibodies with immunologic specificity for the dinitrophenyl group and bivalent antigens consisting of linear poly(ethylene glycol) polymers which terminated at both ends in dinitrophenyl groups. Complex formation between antibodies of both classes and one of several sharp fractions of antigen having number average molecular weights in the range 25 000 to 75 000 were studied by measuring the light scattered from solutions containing equimolar amounts (approximately 5 x 10(-6) mol/L) of one of the antibodies and one size fraction of antigen, and variable amounts of monovalent hapten. The data were analyzed in the context of a model that accounted for the formation of linear and cyclic complexes of all extents of aggregation. Two parameters in addition to the intrinsic antibody-dinitrophenyl group association constant were found to be necessary in the assumed equilibrium model to account for the behavior of the system. One of these accounted for the looses in configuration entropy that resulted when a random-coil polymer became bound at one end to a space-occupying antibody. The other was a ring closure factor for the formation of cyclic complexes. Ring closure factors for the formation of larger cyclic complexes (present in only small amounts under the conditions studied) were related to the ring closure factor for the formation of the smallest, which was found to increase as antigen size decreased, and for each antigen size to be consistently higher for IgG(T) antibody than for IgG antibody. Comparison of the theoretically estimated values of the two parameters within their measured values indicated that the average conformation of IgG antibodies in solution is open ("T" shaped) but the average inter-Fab are angle in IgG(T) antibodies is approximately 60 degrees or less.  相似文献   

19.
BackgroundHuman carbonic anhydrase 9th isoform (CA IX) is an important marker of numerous cancers and is increasingly interesting as a potential anticancer drug target. Various synthetic aromatic sulfonamide-bearing compounds are being designed as potent inhibitors of CA IX. However, sulfonamide compound binding to CA IX is linked to several reactions, the deprotonation of the sulfonamide amino group and the protonation of the CA active site Zn(II)-bound hydroxide. These linked reactions significantly affect the affinities and other thermodynamic parameters such as enthalpies and entropies of binding.MethodsThe observed and intrinsic affinities of compound binding to CA IX were determined by the fluorescent thermal shift assay. The enthalpies and entropies of binding were determined by the isothermal titration calorimetry.ResultsThe pKa of CA IX was determined to be 6.8 and the enthalpy of CA IX-Zn(II)-bound hydroxide protonation was − 24 kJ/mol. These values enabled the analysis of intrinsic thermodynamics of a library of compounds binding to CA IX. The most strongly binding compounds exhibited the intrinsic affinity of 0.01 nM and the observed affinity of 2 nM.ConclusionsThe intrinsic thermodynamic parameters of compound binding to CA IX helped to draw the compound structure to thermodynamics relationship.General significanceIt is important to distinguish the intrinsic from observed parameters of any disease target protein interaction with its inhibitors as drug candidates when drawing detailed compound structure to thermodynamics correlations.  相似文献   

20.
Monoclonal Antibodies with High Affinity for Spiroperidol   总被引:1,自引:1,他引:0  
A diverse panel of monoclonal antibodies was obtained from BALB/c mice immunized with two haptens structurally related to spiroperidol (SPD). Bromoacetyl derivatives of aminospiroperidol (NH2SPD) and N-amino-phenethylspiroperidol (NAPS) were synthesized to couple the haptens covalently to a protein carrier for immunization, thereby maintaining the butyrophenone portion of the immunogen. Hybridomas were selected based on their ability to secrete antibody that binds [3H]SPD with high affinity. Equilibrium dissociation constants for these antibodies ranged from 0.2 to greater than 100 nM. The antigen binding sites of the anti-NH2SPD and anti-NAPS antibodies were characterized in studies of the inhibition of the binding of [3H]-SPD by a series of ligands that are either (a) structurally related to SPD or (b) structurally unrelated to the butyrophenones but known to be selective antagonists of the D2 subtype of dopamine receptor. Based on the patterns of inhibition of the binding of [3H]SPD by these compounds, 12 classes of antibody combining sites were identified. Most of these antibodies bound butyrophenones with high affinity. One anti-NH2SPD and four anti-NAPS antibodies also bound domperidone, a nonbutyrophenone that has a high affinity for D2 receptors. None of the antibodies bound clebopride or sulpiride, D2-selective antagonists of the benzamide class, or the agonist dopamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号