首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Initiation factor IF3 is responsible for the accuracy of translation initiation in bacteria, by destabilizing complexes involving non-initiator tRNA and/or nonstart codons. This proofreading is performed on the 30S subunit to which IF3 binds selectively. IF3 has an unusual architecture, with two globular domains connected by a mobile, positively charged linker. Here, we have investigated the function of this flexible tether by probing its conformation when IF3 is bound to the ribosomal RNA. Using site-directed mutagenesis of the linker region, we have also selectively modified its length, its flexibility and its chemical composition. The function of the mutant genes was assayed in vivo, and the structural and biochemical properties of some of the corresponding variant proteins were characterized in vitro. The two isolated domains of IF3 were also co-expressed in order to test the requirement for their covalent attachment. The results indicate that the physical link between the two domains of IF3 is essential for the function of this protein, but that the exact length and chemical composition of the linker can be varied to a large extent. A model is presented in which the extended linker would act as a 'strap', triggering a conformational change in the 30S subunit, which would then ensure initiator tRNA selection.  相似文献   

3.
4.
Summary We have investigated in vivo the coupling between CytR regulation of the deoP2 promoter in Escherichia coli and the DNA-binding specificity of the cAMP-CRP (cAMP receptor protein) complex in order to obtain a more detailed picture of the role played by cAMP-CRP in CytR regulation. By introducing CRP proteins that exhibit an altered DNA binding specificity into a strain containing a mutant deoP2 promoter in which cAMP-CRP activation was decreased and CytR regulation completely abolished, we show that CytR regulation of this promoter can be reestablished by restored the DNA binding of the cAMP-CRP complex. Hence, CytR regulation of deoP2 can be modulated by simply varying DNA binding of cAMP-CRP. These data confirm the crucial role played by the cAMP-CRP activator complex in CytR regulation of the deoP2 promoter.  相似文献   

5.
6.
Escherichia coli DNA polymerase III holoenzyme is composed of 10 different subunits linked by noncovalent interactions. The polymerase activity resides in the α-subunit. The ε-subunit, which contains the proofreading exonuclease site within its N-terminal 185 residues, binds to α via a segment of 57 additional C-terminal residues, and also to θ, whose function is less well defined. The present study shows that θ greatly enhances the solubility of ε during cell-free synthesis. In addition, synthesis of ε in the presence of θ and α resulted in a soluble ternary complex that could readily be purified and analyzed by NMR spectroscopy. Cell-free synthesis of ε from PCR-amplified DNA coupled with site-directed mutagenesis and selective 15N-labeling provided site-specific assignments of NMR resonances of ε that were confirmed by lanthanide-induced pseudocontact shifts. The data show that the proofreading domain of ε is connected to α via a flexible linker peptide comprising over 20 residues. This distinguishes the α : ε complex from other proofreading polymerases, which have a more rigid multidomain structure.  相似文献   

7.
8.
9.
Upon exposure to alkylating agents, Escherichia coli increases expression of aidB along with three genes (ada, alkA, and alkB) that encode DNA repair proteins. In order to begin to identify the role of AidB in the cell, the protein was purified to homogeneity, shown to possess stoichiometric amounts of flavin adenine dinucleotide (FAD), and confirmed to have low levels of isovaleryl-coenzyme A (CoA) dehydrogenase activity. A homology model of an AidB homodimer was constructed based on the structure of a four-domain acyl-CoA oxidase. The predicted structure revealed a positively charged groove connecting the two active sites and a second canyon of positive charges in the C-terminal domain, both of which could potentially bind DNA. Three approaches were used to confirm that AidB binds to double-stranded DNA. On the basis of its ability to bind DNA and its possession of a redox-active flavin, AidB is predicted to catalyze the direct repair of alkylated DNA.  相似文献   

10.
Tiss A  Barre O  Michaud-Soret I  Forest E 《FEBS letters》2005,579(25):5454-5460
Ferric uptake regulator protein (Fur) is activated by its cofactor iron to a state that binds to a specific DNA sequence called 'Fur box'. Using mass spectrometry-based methods, we showed that Tyr 55 of Escherichia coli Fur, as well as the two thymines in positions 18 and 19 of the consensus Fur Box, are involved with binding. A conformational model of the Fur-DNA complex is proposed, in which DNA is in contact with each H4 [A52-A64] Fur helix. We propose that this interaction is a common feature for the Fur-like proteins, such as Zur and PerR, and their respective DNA boxes.  相似文献   

11.
12.
13.
M Kato  H Aiba  S Tate  Y Nishimura  T Mizuno 《FEBS letters》1989,249(2):168-172
The OmpR protein of Escherichia coli is a positive regulator involved in activation of the ompF and ompC genes which encode the major outer membrane proteins OmpF and OmpC, respectively. By employing recombinant DNA techniques, we isolated the N- and C-terminal halves of the OmpR molecule. From the results of biochemical analyses of these fragments, it was concluded that the N-terminal portion contains a site involved in phosphorylation by an OmpR-specific protein kinase EnvZ, whereas the C-terminal part possesses a DNA-binding site for the ompC and ompF promoters.  相似文献   

14.
We have constructed a clone which over-produces a 33 kDa protein representing the C-terminal portion of the Escherichia coli DNA gyrase A subunit. This protein has no enzymic activity of its own, but will form a complex with a 64 kDa protein (representing the N-terminal part of the A subunit) and the gyrase B subunit, that will efficiently catalyse DNA supercoiling. We show that the 33 kDa protein can bind to DNA on its own in a manner which induces positive supercoiling of the DNA. We propose that the 33 kDa protein represents a domain of the gyrase A subunit which is involved in the wrapping of DNA around DNA gyrase.  相似文献   

15.
16.
In the presence of tyrosine, the TyrR protein of Escherichia coli represses the expression of the tyrP gene by binding to the double TyrR boxes which overlap the promoter. Previously, we have carried out methylation, uracil, and ethylation interference experiments and have identified both guanine and thymine bases and phosphates within the TyrR box sequences that are contacted by the TyrR protein (J. S. Hwang, J. Yang, and A. J. Pittard, J. Bacteriol. 179:1051-1058, 1997). In this study, we have used missing contact probing to test the involvement of all of the bases within the tyrP operator in the binding of TyrR. Our results indicate that nearly all the bases within the palindromic arms of the strong and weak boxes are important for the binding of the TyrR protein. Two alanine-substituted mutant TyrR proteins, HA494 and TA495, were purified, and their binding affinities for the tyrP operator were measured by a gel shift assay. HA494 was shown to be completely defective in binding to the tyrP operator in vitro, while, in comparison with wild-Type TyrR, TA495 had only a small reduction in DNA binding. Missing contact probing was performed by using the purified TA495 protein, and the results suggest that T495 makes specific contacts with adenine and thymine bases at the +/-5 positions in the TyrR boxes.  相似文献   

17.
18.
19.
20.

Background  

Genes orthologous to the ybaB loci of Escherichia coli and Haemophilus influenzae are widely distributed among eubacteria. Several years ago, the three-dimensional structures of the YbaB orthologs of both E. coli and H. influenzae were determined, revealing a novel "tweezer"-like structure. However, a function for YbaB had remained elusive, with an early study of the H. influenzae ortholog failing to detect DNA-binding activity. Our group recently determined that the Borrelia burgdorferi YbaB ortholog, EbfC, is a DNA-binding protein. To reconcile those results, we assessed the abilities of both the H. influenzae and E. coli YbaB proteins to bind DNA to which B. burgdorferi EbfC can bind.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号