首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J W Harper  E A Fox  R Shapiro  B L Vallee 《Biochemistry》1990,29(31):7297-7302
The primary structure of the blood vessel inducing protein angiogenin is 35% identical with that of pancreatic ribonuclease (RNase) and contains counterparts for the critical RNase active-site residues His-12, Lys-41, and His-119. Although angiogenin is a ribonucleolytic enzyme, its activity toward conventional substrates is lower than that of pancreatic RNase by several orders of magnitude. Comparison of the amino acid sequences of RNase and angiogenin reveals several striking differences in the region flanking the active-site lysine, including a deletion and a transposition of aspartic acid and proline residues. In order to examine how these sequence changes alter the functional properties of angiogenin, an angiogenin/RNase hybrid protein (ARH-II), in which residues 38-41 of angiogenin (Pro-Cys-Lys-Asp) have been replaced by the corresponding segment of bovine pancreatic RNase (Asp-Arg-Cys-Lys-Pro), was prepared by regional mutagenesis. Compared to angiogenin, ARH-II has markedly diminished angiogenic activity on the chick embryo chorioallantoic membrane but 5-75-fold greater enzymatic activity toward a variety of polynucleotide and dinucleotide substrates. In addition, the specificity of ARH-II toward dinucleotide substrates differs from that of angiogenin and is qualitatively similar to that of pancreatic RNase. Thus, non-active-site residues near Lys-40 in angiogenin appear to play a significant role in determining enzymatic specificity and reactivity as well as angiogenic potency. An additional angiogenin/RNase hybrid protein (ARH-IV), in which residues 59-71 of ARH-II have been replaced by the corresponding segment of pancreatic RNase, was also prepared.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
J W Harper  B L Vallee 《Biochemistry》1989,28(4):1875-1884
Human angiogenin is a blood vessel inducing protein whose primary structure displays 33% identity to that of bovine pancreatic ribonuclease A (RNase A). Angiogenin catalyzes limited cleavage of 18S and 28S ribosomal RNA and is several orders of magnitude less potent than RNase A toward conventional substrates. A striking structural difference between angiogenin and RNase is the virtual absence of sequence similarity within the region of RNase that contains the Cys-65--Cys-72 disulfide bond. Indeed, angiogenin lacks this disulfide linkage. The present report describes the use of regional mutagenesis to generate a covalent angiogenin/RNase hybrid protein, ARH-I, where residues 58-70 of angiogenin have been replaced by the corresponding segment of RNase A (residues 59-73). The protein expressed in Escherichia coli readily folds at pH 8.5 to form the four expected disulfide bonds. The in vivo angiogenic potency of ARH-I is markedly diminished compared with that of angiogenin when examined using the chick chorioallantoic membrane assay. In contrast, its enzymatic activity is dramatically increased. With high molecular weight wheat germ RNA and tRNA, ARH-I is 660- and 300-fold more active than angiogenin, respectively, while with poly(uridylic acid), poly(cytidylic acid), cytidylyl(3'----5')adenosine (CpA), and uridylyl(3'----5')adenosine (UpA) activity is enhanced by about 200-fold. In addition, the specificity of ARH-I toward dinucleoside 3',5'-phosphates is qualitatively similar to RNase A; while angiogenin prefers cytidylyl(3'----5')guanosine (CpG) to UpA, both RNase and the hybrid prefer UpA to CpG. ARH-I also displays greater than 10-fold enhanced activity toward rRNA in intact ribosomes, while abolishing the capacity of the ribosome to support cell-free protein synthesis. The enhanced enzymatic properties of ARH-I parallel a 2-fold increase in chemical reactivity of active-site lysine and histidine residues based on rates of chemical modification. The data indicate that introduction of a region of RNase A containing the Cys-65--Cys-72 disulfide bond into angiogenin dramatically increases RNase-like enzymatic activity while reducing its angiogenicity.  相似文献   

3.
The complete amino acid sequence of bovine milk angiogenin   总被引:9,自引:0,他引:9  
The amino acid sequence of angiogenin isolated from bovine milk was deduced by gas-phase sequencing of the protein and its fragments. The protein contains 125 residues and has a calculated molecular mass of 14,577 Da. The sequence is highly homologous (65% identity) to the sequence of human angiogenin, most of the differences being the result of conservative replacements. Like human angiogenin, the bovine protein is also homologous to bovine pancreatic RNase A (34% identity) and the three major active site residues known to be involved in the catalytic process, His-14, Lys-41 and His-115, are conserved. When tested against conventional substrates for RNase A activity, bovine angiogenin displays the same selective ribonucleolytic activity as human angiogenin. The sequence of bovine angiogenin contains the cell recognition tripeptide Arg-Gly-Asp which is not present in the human protein.  相似文献   

4.
F S Lee  B L Vallee 《Biochemistry》1990,29(28):6633-6638
Human placental ribonuclease inhibitor (PRI), a 50-kDa tight-binding inhibitor of angiogenin and pancreatic ribonuclease, consists predominantly of 7 internal repeats, each 57 residues long. Repeats 3 plus 4 (residues 144-257) or repeat 6 (residues 315-371) can be deleted to give mutant proteins, PRI delta 3-4 and PRI delta 6, respectively, that retain inhibitory activity [Lee, F. S., & Vallee, B. L. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 1879-1883]. We describe here the isolation and characterization of these two active mutant proteins. Both inhibit the enzymatic activities of either angiogenin or bovine pancreatic ribonuclease A (RNase A) with a 1:1 stoichiometry, and the mode of inhibition of RNase A by either is competitive. PRI delta 3-4 binds to angiogenin and RNase A with Ki values of 0.72 and 170 pM, respectively The corresponding values for PRI delta 6 are 22 and 43 pM, respectively. Since recombinant PRI to angiogenin and RNase A with Ki values of 0.29 and 68 fM, respectively, deletion of repeats 3 plus 4 weakens both interactions 2500-fold while deletion of repeat 6 weakens them 76,000- and 630-fold, respectively. Therefore, either the deletion of these repeats has altered the conformation of the angiogenin/RNase binding site in PRI or the deleted repeats contribute directly to the binding site, or both. In addition, the tighter binding to angiogenin versus RNase A seen with native PRI has been preserved in PRI delta 3-4 but has been almost completely abolished in PRI delta 6.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
R Shapiro  B L Vallee 《Biochemistry》1989,28(18):7401-7408
The roles of His-13 and His-114 in the ribonucleolytic and angiogenic activities of human angiogenin have been investigated by site-directed mutagenesis. Replacement of either residue by alanine (H13A and H114A) decreases enzymatic activity toward tRNA by at least 10,000-fold and virtually abolishes 10,000-fold and virtually abolishes angiogenic activity in the chick embryo chorioallantoic membrane assay. Both the H13A and H114A mutant proteins compete effectively with angiogenin in the latter assay; only a 5-fold molar excess of H13A over unmodified protein is required for complete inhibition. The His----Ala substitutions, however, do not have any significant effect on the interaction of angiogenin with human placental ribonuclease inhibitor, an extremely potent inhibitor of angiogenin (Ki approximately 7 x 10(-16 M) previously shown to interact with another active-site residue, Lys-40. The effects of more conservative replacements-glutamine at position 13 and asparagine at position 114--were also examined. While the enzymatic activity of the H114N mutant was at least 3300-fold less than for the unmodified protein, the H13Q derivative had only 300-fold reduced activity toward tRNA and cytidylyl(3'----5') adenosine. Both substitutions substantially decreased angiogenic activity. The parallel effects on ribonucleolytic and biological activities observed with all four mutant proteins provide strong evidence that the latter activity of angiogenin is dependent on a functional enzymatic active site. The capacity of the H13A and H114A derivatives to compete with angiogenin in the chorioallantoic membrane assay suggests several additional features of the biological mode of action of this protein.  相似文献   

6.
Hypersensitive substrate for ribonucleases.   总被引:4,自引:1,他引:3       下载免费PDF全文
A substrate for a hypersensitive assay of ribonucleolytic activity was developed in a systematic manner. This substrate is based on the fluorescence quenching of fluorescein held in proximity to rhodamine by a single ribonucleotide embedded within a series of deoxynucleotides. When the substrate is cleaved, the fluorescence of fluorescein is manifested. The optimal substrate is a tetranucleotide with a 5',6-carboxyfluorescein label (6-FAM) and a 3',6-carboxy-tetramethylrhodamine (6-TAMRA) label: 6-FAM-dArUdAdA-6-TAMRA. The fluorescence of this substrate increases 180-fold upon cleavage. Bovine pancreatic ribonuclease A (RNase A) cleaves this substrate with a k (cat)/ K (m)of 3.6 x 10(7)M(-1)s(-1). Human angiogenin, which is a homolog of RNase A that promotes neovascularization, cleaves this substrate with a k (cat)/ K (m)of 3. 3 x 10(2)M(-1)s(-1). This value is >10-fold larger than that for other known substrates of angio-genin. With these attributes, 6-FAM-dArUdAdA-6-TAMRA is the most sensitive known substrate for detecting ribo-nucleolytic activity. This high sensitivity enables a simple protocol for the rapid determination of the inhibition constant ( K (i)) for competitive inhibitors such as uridine 3'-phosphate and adenosine 5'-diphos-phate.  相似文献   

7.
The primary structures of the blood vessel inducing protein human angiogenin and human pancreatic ribonuclease (RNase) are 35% identical. Angiogenin catalyzes the limited cleavage of ribosomal RNA (18 and 28 S), yielding a characteristic pattern of polynucleotide products, but shows no significant activity toward conventional pancreatic RNase substrates [Shapiro, R., Riordan, J. F., & Vallee, B. L. (1986) Biochemistry 25, 3527-3532]. Angiogenin/RNase hybrid enzymes--wherein particular regions of primary structure in RNase are replaced by the corresponding segments of angiogenin--serve to explore the structural features underlying angiogenin's characteristic activities. Herein we show that synthetic angiogenin peptides, Ang(1-21) and Ang(108-123), form noncovalent complexes with inactive fragments of bovine RNase A--RNase(21-124) (i.e., S-protein) and RNase(1-118), respectively--with regeneration of activity toward conventional RNase substrates. Maximal activities for the Ang(1-21)/S-protein complex (Kd = 1.0 microM) are 52%, 45%, and 15% toward cytidine cyclic 2',3'-phosphate, cytidylyl(3'----5')adenosine, and yeast RNA, respectively. In contrast, activities of the RNase(1-118)/Ang(108-123) hybrid (Kd = 25 microM) are 1-2 orders of magnitude lower toward cyclic nucleotides and dinucleoside phosphates. However, substitution of phenylalanine for Leu-115 in Ang(108-123) increases activity up to 100-fold. Both His-13 and His-114 in the angiogenin peptides are required for activity since their substitution by alanine yields inactive complexes. Importantly, the pattern of polynucleotide products formed during cleavage of ribosomal RNA by the Ang(1-21)/S-protein hybrid shows a striking resemblance to that formed by angiogenin, demonstrating that the hybrid retains features of both angiogenin and RNase A.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
In this study, compounds with a carboxy ester in lieu of the phosphate ester at the 3'-position have been employed to inhibit the ribonucleolytic activity of ribonuclease A (RNase A). Phosphates at the 3'-position of pyrimidine bases are well-known inhibitors of the protein. We have investigated the inhibition of RNase A by 3'-O-carboxy esters of thymidine. The compounds behave as competitive inhibitors with inhibition constants ranging from 42 to 95 microM. The mode of inhibition has also been confirmed by (1)H NMR studies of the active site histidines of RNase A. Docking studies have further substantiated the experimental results. The compounds are also found to inhibit the ribonucleolytic activity of angiogenin, a homologous protein and potent inducer of blood vessel formation.  相似文献   

9.
R Shapiro  E A Fox  J F Riordan 《Biochemistry》1989,28(4):1726-1732
The role of lysines in the ribonucleolytic and angiogenic activities of human angiogenin has been examined by chemical modification and site-directed mutagenesis. It was demonstrated previously [Shapiro, R., Weremowicz, S., Riordan, J.F., & Vallee, B.L. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 8783-8787] that extensive treatment with lysine reagents markedly decreases the ribonucleolytic activity of angiogenin. In the present study, limited chemical modification with 1-fluoro-2,4-dinitrobenzene followed by C18 high-performance liquid chromatography yielded several (dinitrophenyl)angiogenin derivaties. The major derivative formed had slightly increased enzymatic activity compared with the unmodified protein. Tryptic peptide mapping demonstrated the site of modification to be Lys-50. A second derivative, modified at Lys-60, was 34% active. Analysis of a third derivative indicated that modification of Lys-82 did not decrease activity. Thus, Lys-50 and Lys-82 are unessential for enzymatic activity while Lys-60 may play a minor role. No pure derivative modified at Lys-40, corresponding to the active-site residue Lys-41 of the homologous protein ribonuclease A, could be obtained by chemical procedures. Therefore, we employed oligonucleotide-directed mutagenesis to replace this lysine with glutamine or arginine. The Gln-40 derivative had less than 0.05% enzymatic activity compared with the unmodified protein and substantially reduced angiogenic activity when examined with the chick embryo chorioallantoic membrane assay. These results suggest that the angiogenic activity of the protein is dependent on an intact enzymatic active site. The Arg-40 derivative had 2.2% ribonucleolytic activity compared with unmodified angiogenin. The effects of reductive methylation of this derivative indicate that no lysines other than Lys-40 are critical.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Johnson RJ  Lin SR  Raines RT 《The FEBS journal》2006,273(23):5457-5465
Translating proteases as inactive precursors, or zymogens, protects cells from the potentially lethal action of unregulated proteolytic activity. Here, we impose this strategy on bovine pancreatic ribonuclease (RNase A) by creating a zymogen in which quiescent ribonucleolytic activity is activated by the NS3 protease of the hepatitis C virus. Connecting the N-terminus and C-terminus of RNase A with a 14-residue linker was found to diminish its ribonucleolytic activity by both occluding an RNA substrate and dislocating active-site residues, which are devices used by natural zymogens. After cleavage of the linker by the NS3 protease, the ribonucleolytic activity of the RNase A zymogen increased 105-fold. Both before and after activation, the RNase A zymogen displayed high conformational stability and evasion of the endogenous ribonuclease inhibitor protein of the mammalian cytosol. Thus, the creation of ribonuclease zymogens provides a means to control ribonucleolytic activity and has the potential to provide a new class of antiviral chemotherapeutic agents.  相似文献   

11.
In this study, we report the inhibition of ribonuclease A (RNase A) by certain aminonucleosides. This is the first such instance of the use of this group of compounds to investigate the inhibitory activity of this protein. The compounds synthesized have been tested for their ability to inhibit the ribonucleolytic activity of RNase A by an agarose gel-based assay. A tRNA precipitation assay and inhibition kinetic studies with cytidine 2',3'-cyclic monophosphate as the substrate have also been conducted for two of the compounds. Results indicate substantial inhibitory activity with inhibition association constants in the micromolar range. The experimental studies have been substantiated by docking of the aminonucleoside ligands to RNase A using AutoDock. We find that the ligands preferentially bind to the active site of the protein molecule with a favorable free energy of binding. The study has been extended to a member of the ribonuclease superfamily, angiogenin, which is a potent inducer of blood vessel formation. We show that the aminonucleosides act as potent inhibitors of angiogenin induced angiogenesis.  相似文献   

12.
M D Bond  B L Vallee 《Biochemistry》1988,27(17):6282-6287
Angiogenin, which induces the formation of new blood vessels, was isolated previously from two human sources--HT-29 tumor conditioned media and normal plasma. By use of a newly developed binding assay, a similar protein has now been purified from bovine plasma at levels of 30-80 micrograms/L. This protein has the structural, enzymatic, and biological characteristics expected for an angiogenin molecule. Its amino acid composition is similar to that of the human protein, and 22 of 31 residues in the amino-terminal sequences are identical, including a block of 11 consecutive residues. Like human angiogenin, the bovine protein binds placental ribonuclease inhibitor, is inactive toward conventional RNase A substrates, and displays selective ribonucleolytic activity toward some rRNAs. In addition, the bovine protein induces angiogenesis in vivo in the chick embryo chorioallantoic membrane assay at levels as low as 44 fmol per egg. Thus, angiogenin is present in bovine sera at levels similar to those observed in man, and its enzymatic and biological activities are identical with those of the human protein.  相似文献   

13.
S Sorrentino  D G Glitz 《FEBS letters》1991,288(1-2):23-26
The eosinophil cationic protein (ECP), a potent helminthotoxin with considerable neurotoxic activity, was recently shown to also have ribonucleolytic activity. In this work the substrate preference of ECP ribonuclease action was studied in detail. With single-stranded RNA or synthetic polyribonucleotide substrates ECP showed significant but low activity, 70- to 200-fold less than that of bovine RNase A. ECP hydrolyzed RNA more rapidly than it did any synthetic polynucleotide. Poly(U) was degraded more rapidly than poly(C), and poly(A) and double-stranded substrates were extremely resistant. Defined low molecular weight substrates in the form of the 16 dinucleoside phosphates (NpN') and uridine and cytidine 2',3'-cyclic phosphates were tested, and none showed hydrolysis by ECP at a significant rate. The results link ECP ribonucleolytic activity to the 'non-secretory' liver-type enzymes rather than to the 'secretory' pancreatic-type RNases.  相似文献   

14.
Human angiogenin (Ang) is a potent inducer of blood vessel formation and is a member of the pancreatic ribonuclease superfamily. Its enzymatic activity is unusually weak and biased toward cleavage after cytidine nucleotides. As part of an ongoing investigation into the structural basis of Ang's characteristic activity, we have determined the crystal structures of three Ang variants having novel activity. (i) The structure of T44D-Ang indicates that Asp44 can participate directly in pyrimidine binding and that the intrinsic hydrogen-bonding capability of this residue largely governs the pyrimidine specificity of this variant. Unexpectedly, the mutation also causes the most extensive disruption of the C-terminus seen in any Ang variant thus far. This allows the side chain of Arg101 to penetrate the B(1) site, raising the possibility that it participates in substrate binding as occurs in ribonuclease 4. (ii) The structure of T80A-Ang supports the view that Thr80 plays little role in maintaining the obstructive conformation of the C-terminus and that its participation in a hydrogen bond with Thr44 selectively weakens the interaction between Thr44 and N3 of cytosine. (iii) ARH-II is an angiogenin/RNase A chimera in which residues 38-41 of Ang are replaced with the corresponding residues (38-42) of RNase A. Its structure suggests that the guest segment influences catalysis by subtle means, possibly by reducing the pK(a) of the catalytic lysine. The loss of angiogenic activity is not attributable to disruption of known cell-binding or nuclear translocation sites but may be a consequence of the chimera's enhanced ribonucleolytic activity.  相似文献   

15.
Angiogenin and ribonuclease A share 33% sequence identity but have distinct functions. Angiogenin is a potent inducer of angiogenesis that is only weakly ribonucleolytic, whereas ribonuclease A is a robust ribonuclease that is not angiogenic. A chimera ("ARH-I"), in which angiogenin residues 58-70 are replaced with residues 59-73 of ribonuclease A, has intermediate ribonucleolytic potency and no angiogenic activity. Here we report a crystal structure of ARH-I that reveals the molecular basis for these characteristics. The ribonuclease A-derived (guest) segment adopts a structure largely similar to that in ribonuclease A, and successfully converts this region from a cell-binding site to a purine-binding site. At the same time, its presence causes complex changes in the angiogenin-derived (host) portion that account for much of the increased ribonuclease activity of ARH-I. Guest-host interactions of this type probably occur more generally in protein chimeras, emphasizing the importance of direct structural information for understanding the functional behavior of such molecules.  相似文献   

16.
The ribonucleolytic activity of angiogenin.   总被引:2,自引:0,他引:2  
Angiogenin (ANG), a homologue of bovine pancreatic ribonuclease A (RNase A), promotes the growth of new blood vessels. The biological activity of ANG is dependent on its ribonucleolytic activity, which is far lower than that of RNase A. Here, the efficient heterologous production of human ANG in Escherichia coli was achieved by replacing two sequences of rare codons with codons favored by E. coli. Hypersensitive fluorogenic substrates were used to determine steady-state kinetic parameters for catalysis by ANG in continuous assays. The ANG pH-rate profile is a classic bell-shaped curve, with pK(1) = 5.0 and pK(2) = 7.0. The ribonucleolytic activity of ANG is highly sensitive to Na(+) concentration. A decrease in Na(+) concentration from 0.25 to 0.025 M causes a 170-fold increase in the value of k(cat)/K(M). Likewise, the binding of ANG to a tetranucleotide substrate analogue is dependent on [Na(+)]. ANG cleaves a dinucleotide version of the fluorogenic substrates with a k(cat)/K(M) value of 61 M(-1) s(-1). When the substrate is extended from two nucleotides to four or six nucleotides, values of k(cat)/K(M) increase by 5- and 12-fold, respectively. Together, these data provide a thorough picture of substrate binding and turnover by ANG.  相似文献   

17.
Sialic acid-binding lectin (SBL) isolated from Rana catesbeianaeggs is a basic protein which agglutinates a large variety oftumour cells and has an amino acid sequence homologous to thatof human angiogenin and pancreatic ribonuclease (RNase). AlthoughSBL and angiogenin lack the Cys-65-Cys-72 disulphide bond ofpancreatic RNase, the locations of the other three disulphidebonds are similar among the three molecules. SBL was found toexhibit RNase activity, as well as catalytic properties resemblingthose of bovine RNase A in some respects. For example, SBL hydrolysespoly(uridylic acid) and poly(cytidylic acid) as substrates,and prefers the former. RNase A and angiogenin are stronglyinhibited by human placental RNase inhibitor, whereas the RNaseactivity and tumour cell agglutination activity of SBL are notaffected by this inhibitor.  相似文献   

18.
血管生成素是核糖核酸酶A超家族成员之一,具有较弱的核糖核酸酶活性.最新研究发现,血管生成素参与细胞内多种RNA的代谢过程.在生长条件下,血管生成素可以发生核转位聚集于细胞核中,促进rRNA转录,并可参与其剪切加工,同时它也调控一系列mRNA基因的转录,最终促进细胞的生长和增殖;在应激条件下,血管生成素能降解tRNA形成tiRNA,抑制细胞内整体蛋白质的翻译水平,并促进应激小体的形成,激活细胞内应激保护机制,从而促进细胞存活.此外,血管生成素还可参与非编码小RNA等RNA代谢过程.本文概述了血管生成素在RNA代谢中的作用与分子机制等方面的进展,并探讨了其在疾病发生和发展中的作用,以期开拓血管生成素的研究新思路.  相似文献   

19.
A comparison of the sequences of three homologous ribonucleases (RNase A, angiogenin and bovine seminal RNase) identifies three surface loops that are highly variable between the three proteins. Two hypotheses were contrasted: (i) that this variation might be responsible for the different catalytic activities of the three proteins; and (ii) that this variation is simply an example of surface loops undergoing rapid neutral divergence in sequence. Three hybrids of angiogenin and bovine pancreatic ribonuclease (RNase) A were prepared where regions in these loops taken from angiogenin were inserted into RNase A. Two of the three hybrids had unremarkable catalytic properties. However, the RNase A mutant containing residues 63-74 of angiogenin had greatly diminished catalytic activity against uridylyl-(3'----5')-adenosine (UpA), and slightly increased catalytic activity as an inhibitor of translation in vitro. Both catalytic behaviors are characteristic of angiogenin. This is one of the first examples of an engineered external loop in a protein. Further, these results are complementary to those recently obtained from the complementary experiment, where residues 59-70 of RNase were inserted into angiogenin [Harper and Vallee (1989) Biochemistry, 28, 1875-1884]. Thus, the external loop in residues 63-74 of RNase A appears to behave, at least in part, as an interchangeable 'module' that influences substrate specificity in an enzyme in a way that is isolated from the influences of other regions in the protein.  相似文献   

20.
Eosinophil cationic protein (ECP) is located in the matrix of the eosinophil's large specific granule and has marked toxicity for a variety of helminth parasites, hemoflagellates, bacteria, single-stranded RNA virus, and mammalian cells and tissues. It belongs to the bovine pancreatic ribonuclease A (RNase A) family and exhibits ribonucleolytic activity which is about 100-fold lower than that of a related eosinophil ribonuclease, the eosinophil-derived neurotoxin (EDN). The crystal structure of human ECP, determined at 2.4 A, is similar to that of RNase A and EDN. It reveals that residues Gln-14, His-15, Lys-38, Thr-42, and His-128 at the active site are conserved as in all other RNase A homologues. Nevertheless, evidence for considerable divergence of ECP is also implicit in the structure. Amino acid residues Arg-7, Trp-10, Asn-39, His-64, and His-82 appear to play a key part in the substrate specificity and low catalytic activity of ECP. The structure also shows how the cationic residues are distributed on the surface of the ECP molecule that may have implications for an understanding of the cytotoxicity of this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号