首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The persistence of propanil in soil and aquatic environments along with the possible accumulation of toxic degradation products, such as chloroanilines, is of environmental concern. In this work, a continuous small-scale bioprocess to degrade the herbicide propanil, its main catabolic by-product, 3,4-dichloroaniline (3,4-DCA), and the herbicide adjuvants is carried out. A microbial consortium, constituted by nine bacterial genera, was selected. The isolated strains, identified by amplification and sequencing of their 16S rDNA, were: Acidovorax sp., Luteibacter (rhizovicinus), Xanthomonas sp., Flavobacterium sp., Variovorax sp., Acinetobacter (calcoaceticus), Pseudomonas sp., Rhodococcus sp., and Kocuria sp. The ability of the microbial consortium to degrade the herbicide was evaluated in a biofilm reactor at propanil loading rates ranging from 1.9 to 36.8 mg L?1 h?1. Complete removal of propanil, 3,4-DCA, chemical oxygen demand and total organic carbon was obtained at propanil loading rates up to 24.9 mg L?1 h?1. At higher loading rates, the removal efficiencies decayed. Four of the identified strains could grow individually in propanil, and 3,4-DCA: Pseudomonas sp., Acinetobacter calcoaceticus, Rhodococcus sp., and Xanthomonas sp. The Kokuria strain grew on 3,4-DCA, but not on propanil. The first three bacteria have been related to biodegradation of phenyl urea herbicides or chlorinated anilines. Although some strains of the genera Xanthomonas and Kocuria have a role in the biodegradation of several xenobiotic compounds, as far as we know, there are no reports about degradation of propanil by Xanthomonas or 3,4-DCA by Kocuria species.  相似文献   

2.
Chlorpyrifos (CP) is one of the most commonly applied insecticides for control of pests and insects. The inappropriate use of this kind of chemicals has caused heavy contamination of many terrestrial and aquatic ecosystems thus representing a great environmental and health risk. The main purpose of this work is to investigate novel microbial agents (Pseudomonas stutzeri and the previously obtained consortium LB2) with the ability to degrade CP from polluted effluents. This goal was achieved by operating at different lab scales (flask and bioreactor) and operation modes (batch and fed-batch). Very low degradation and biomass levels were detected in cultures performed with the consortium LB2. In contrast, near complete CP degradation was reached by P. stutzeri at the optimal conditions in less than 1 month, showing a depletion rate of 0.054 h?1. The scale-up at bench scale stirred tank bioreactor allowed improving the specific degradation rate in ten folds and total CP degradation was obtained after 2 days. Moreover, biomass and biodegradation profiles were modelled to reach a better characterization of the bioremediation process.  相似文献   

3.
Metal removal potential of indigenous mining microorganisms from acid mine drainage (AMD) has been well recognised in situ at mine sites. However, their removal capacity requires to be investigated for AMD treatment. In the reported study, the capacity of an indigenous AMD microbial consortium dominated with Klebsormidium sp., immobilised in a photo-rotating biological contactor (PRBC), was investigated for removing various elements from a multi-ion synthetic AMD. The synthetic AMD was composed of major (Cu, Mn, Mg, Zn, Ca, Na, Ni) and trace elements (Fe, Al, Cr, Co, Se, Ag, Mo) at initial concentrations of 2 to 100 mg/L and 0.005 to 1 mg/L, respectively. The PRBC was operated for two 7-day batch periods under pH conditions of 3 and 5. The maximum removal was observed after 3 and 6 days at pH 3 and 5, respectively. Daily water analysis data demonstrated the ability of the algal–microbial biofilm to remove an overall average of 25–40 % of the major elements at pH 3 in the order of Na?>?Cu?>?Ca?>?Mg?>?Mn?>?Ni?>?Zn, whereas a higher removal (35–50 %) was observed at pH 5 in the order of Cu?>?Mn?>?Mg?>?Ca?>?Ni?>?Zn?>?Na. The removal efficiency of the system for trace elements varied extensively between 3 and 80 % at the both pH conditions. The batch data results demonstrated the ability for indigenous AMD algal–microbial biofilm for removing a variety of elements from AMD in a PRBC. The work presents the potential for further development and scale-up to use PBRC inoculated with AMD microorganisms at mine sites for first or secondary AMD treatment.  相似文献   

4.
Using a successive transfer method on mineral salt medium containing simazine, a microbial community enriched with microorganisms able to grow on simazine was obtained. Afterwards, using a continuous enrichment culture procedure, a bacterial community able to degrade simazine from an herbicide formulation was isolated from a chemostat. The continuous selector, fed with a mineral salt medium containing simazine and adjuvants present in the commercial herbicide formulation, was maintained in operation for 42 days. Following the lapse of this time, the cell count increased from 5 x 10(5) to 3 x 10(8) CFU mL(-1), and the simazine removal efficiency reached 96%. The chemostat's bacterial diversity was periodically evaluated by extracting the culture's bacterial DNA, amplifying their 16S rDNA fragments and analyzing them by thermal gradient gel electrophoresis. Finally, a stable bacterial consortium able to degrade simazine was selected. By PCR amplification, sequencing of bacterial 16S rDNA amplicons, and comparison with known sequences of 16S rDNA from the NCBI GenBank, eight bacterial strains were identified. The genera, Ochrobactrum, Mycobacterium, Cellulomonas, Arthrobacter, Microbacterium, Rhizobium and Pseudomonas have been reported as common degraders of triazinic herbicides. On the contrary, we were unable to find reports about the ability of the genus Pseudonocardia to degrade triazinic compounds. The selected bacterial community was attached to a porous support in a concurrently aerated four-stage packed-bed reactor fed with the herbicide. Highest overall simazine removal efficiencies eta (SZ) were obtained at overall dilution rates D below 0.284 h(-1). However, the multistage packed bed reactor could be operated at dilution rates as high as D = 3.58 h(-1) with overall simazine removal volumetric rates R (v,SZ) = 19.6 mg L(-1) h(-1), and overall simazine removal specific rates R (X,SZ) = 13.48 mg (mg cell protein)(-1) h(-1). Finally, the consortium's ability to degrade 2-chloro-4,6-diamino-1,3,5-triazine (CAAT), cyanuric acid and the herbicide atrazine, pure or mixed with simazine, was evaluated in fed batch processes.  相似文献   

5.
This study aimed to develop technology enhancing the biodegradation efficacy against organophosphorus fungicide with biofilm-forming bacteria in situ. Using the crystal violet staining method, two bacterial strains having biofilm formation capability were isolated and identified as Pseudomonas sp. C7 and Bacillus sp. E5. Compared with the culture of tolclofos-methyl degrader Sphingomonas sp. 224, biofilm formation was improved by co-inoculation with biofilm-forming bacterium Bacillus sp. E5. Evaluated in liquid culture conditions, this two-species mixed consortium was observed to degrade tolclofos-methyl more effectively than Sphingomonas sp. 224 alone, with an approximately 90% degradation efficiency within 48 h of dosing. The improved effectiveness of the consortium biofilm was reflected using soil in situ with an approximately 7% increased degradation ratio over Sphingomonas sp. 224 alone. This is the first report demonstrating improved bioremediation degradation efficacy against tolclofos-methyl exhibited by a consortium biofilm. This work presents a possible effective bioremediation strategy using a specific biofilm composition against pollutants containing organophosphorus compounds in situ.  相似文献   

6.
In this research, aerobic decolorization of Acid Brilliant Scarlet GR by microbial community was studied. Effects of conditions and dye concentraion on decolorization processes were investigated. Additionally, continuous decolorization was evaluated through sequencing batch tests and the microbial dynamics during this process was analyzed by polymerase chain reaction-denaturing gradient gel electrophoresis. The results showed that 100 mg l?1 of the dye was completely decolorized within 12 h, which was mainly caused by biodegradation. The optimal decolorization conditions were as follows: inoculation size 2.07 g l?1 (wet cell pellet), rotation speed 150 r min?1, pH 5.0–7.0 and 30 °C. The processes were well described by zero-order kinetics, and more than 700 mg l?1 of the dye would inhibit the activity of the consortium. Furthermore, the microbial community exhibited high efficiency in sequencing batch processes for continuous decolorization. Microbial community structure shifted obviously when exposed to higher concentration of the dye (500 mg l?1), and all the dominant microorganisms were affiliated with four different phyla of Actinobacteria, Bacteroidetes, Proteobacteria and Firmicutes.  相似文献   

7.
Kutajarista is an Ayurvedic fermented herbal formulation prescribed for gastrointestinal disorders. This herbal formulation undergoes a gradual fermentative process and takes around 2 months for production. In this study, microbial composition at initial stages of fermentation of Kutajarista was assessed by culture independent 16S rRNA gene clone library approach. Physicochemical changes were also compared at these stages of fermentation. High performance liquid chromatography–mass spectrometry analysis showed that Gallic acid, Ellagic acid, and its derivatives were the major chemical constituents recovered in this process. At 0 day of fermentation, Lactobacillus sp., Acinetobacter sp., Alcaligenes sp., and Methylobacterium sp. were recovered, but were not detected at 8 day of fermentation. Initially, microbial diversity increased after 8 days of fermentation with 11 operational taxonomic units (OTUs), which further decreased to 3 OTUs at 30 day of fermentation. Aeromonas sp., Pseudomonas sp., and Klebsiella sp. dominated till 30 day of fermentation. Predominance of γ- Proteobacteria and presence of gallolyl derivatives at the saturation stage of fermentation implies tannin degrading potential of these microbes. This is the first study to highlight the microbial role in an Ayurvedic herbal product fermentation.  相似文献   

8.
Different fermentation processes, including batch, fed-batch and repeated fed-batch processes by Schizochytrium sp., were studied and compared for the effective DHA-rich microbial lipids production. The comparison between different fermentation processes showed that fed-batch process was a more efficient cultivation strategy than the batch process. Among the four different feeding strategies, the glucose concentration feed-back feeding strategy had achieved the highest fermentation results of final cell dry weight, total lipids content, DHA content and DHA productivity of 72.37, 48.86, 18.38 g l?1 and 138.8 mg l?1 h?1, respectively. The repeated fed-batch process had the advantages of reducing the time and cost for seed culture and inoculation between each fermentation cycles. The results of fermentation characteristics and lipid characterization of the repeated fed-batch process indicated that this repeated fed-batch process had promising industrialization prospect for the production of DHA-rich microbial lipids.  相似文献   

9.
In this study, the capacity of a natural macroalgae consortium consisting of Chaetomorpha sp., Polysiphonia sp., Ulva sp. and Cystoseira sp. species for the removal of copper ions from aqueous environment was investigated at different operating conditions, such as solution pH, copper ion concentration and contact time. These environmental parameters affecting the biosorption process were optimized on the basis of batch experiments. The experimentally obtained data for the biosorption of copper ions onto the macroalgae-based biosorbent were modeled using the isotherm models of Freundlich, Langmuir, Sips and Dubinin–Radushkevich and the kinetic models of pseudo-first-order, pseudo-second-order, Elovich and Weber and Morris. The pseudo-first-order and Sips equations were the most suitable models to describe the copper biosorption from aqueous solution. The thermodynamic data revealed the feasibility, spontaneity and physical nature of biosorption process. Based on the data of Sips isotherm model, the biosorption capacity of biosorbent for copper ions was calculated as 105.370 mg g?1 under the optimum operating conditions. A single-stage batch biosorption system was developed to predict the real-scale-based copper removal performance of biosorbent. The results of this investigation showed the potential utility of macroalgae consortium for the biosorption of copper ions from aqueous medium.  相似文献   

10.
Enrichment of microbial consortia provides an approach to simulate and investigate microbial communities in natural environments. In this study, a cellulolytic microbial consortium SQD-1.1 was enriched from mangrove soil of Qinglan port (Hainan, China) by 27 times continuous subcultivation under anaerobic static conditions. The consortium could completely degrade 0.2 % (w/v) filter paper within 3 days and utilized it as the sole carbon source. PCR-denaturing gradient gel electrophoresis analysis revealed a stable microbial community structure in the incubation process of 10 days and in the procedure of subcultivation. Twenty-four operational taxonomic units belonging to seven phyla were obtained from the full-length 16S rRNA gene library. Five clones, closest related to the genera Alkaliflexus, Clostridium, Alistipes, Spirochaeta, and Trichococcus, were the predominant ones. Among them, M117, phylogeneticly showing high similarity (16S rRNA gene identity, 95.3 %) with the cellulolytic anaerobic bacterium Clostridium straminisolvens CSK1T, was the potential key cellulolytic bacterium. Using the plate cultivation method, 12 strains, including one potential new species and four potential new species of new genera, were isolated. The strain P2, corresponding to the most frequently detected clone (M05) in the 16S rRNA gene library, showed both CMCase and xylanase activity and may be another important cellulolytic bacterium. The findings of cellulase activity in cell pellet and cohesion and dockerin domains in metagenome data further suggested the potential of utilization of cellulosomes by the consortium to degrade cellulose. Consortium SQD-1.1 provides a candidate for investigating the mechanism of cellulose degradation under anoxic conditions in natural environments.  相似文献   

11.
This study investigates the effect of Fenton reagent on the structure and function of a microbial consortium during the anaerobic degradation of hexachloroethane (HCA) and tetrachloroethene (PCE). Anaerobic biodegradation tests of HCA and PCE were performed in batch reactors using an anaerobic microbial consortium that had been exposed to Fenton reagent for durations of 0, 0.04, and 2 days and then allowed to recover for periods of 0, 3, and 7 days. The bacterial community structure was determined using culture-independent methods of 16S rRNA gene sequencing and automated ribosomal intergenic spacer analysis. Larger recovery periods partially restored the microbial community structure; however, the recovery periods did not restore the loss of ability to degrade HCA and PCE in cultures shocked for 0.04 days, and PCE in cultures shocked for 2 days. Overall the exposure to Fenton reagent had an impact on bacterial community structure with downstream effects on HCA and PCE degradation. This study highlights that the impacts of short- and long-term shocks on microbial community structure and function can be correlated using a combination of biodegradation tests and community structure analysis tools.  相似文献   

12.
Microorganisms with high oil-degrading performance are essential for bioremediation of soil contaminated with crude oil. A positive end dilution method was employed for the selection of crude oil-degrading functional consortium from contaminated soil. The selected consortium was consisted of Rhizobiales sp., Pseudomonas sp., Brucella sp., Bacillus sp., Rhodococcus sp., Microbacterium sp. and Roseomonas sp. and removed nearly 52.1% of crude oil at initial concentration of 10,000 mg l−1 at 30 °C within 7 days, with removal of aliphatic hydrocarbons by 71.4% and aromatic hydrocarbons by 36.0%, respectively. The effectiveness of the consortium for bioaugmentation was confirmed with microcosm test by contaminated soil (1.0 kg) from Karemary Oilfield, China. The removal efficiency of crude oil was enhanced to >50% in microcosms with the consortium compared with 8-13% or lower in controls over a 60 day period. The crude oil removal reaction was probably first order reaction and the rate was greatly enhanced by bioaugmentation. Supplementation of nitrogen and phosphate sources had limited effect on the oil removal in the tested soil.  相似文献   

13.
the research aim of this study was to characterize an isolated native strain of Chlorella sp. ACUF_802, well adapted to a high nitrate concentration environment and to investigate its potential to nitrate and phosphate removal from industrial wastewaters with the minimal addition of chemical reagents and energy. The isolated strain was identified and evaluated for its capability to support biomass growth and nutrient removal from synthetic wastewater in batch tests using different concentrations of carbon and nitrogen, different carbon sources and N:P ratios. The strain was isolated via the plating method from the settler of a pilot scale moving bed biofilm reactor performing a nitrification process. The strain was identified using molecular analysis with rDNA primers. Using sodium bicarbonate as carbon source, the batch productivity (71.43 mg L?1 day?1) of the strain Chlorella sp. ACUF_802 was calculated with a logistic model and compared to the values reported in the literature. Assays on the effect of the N:P ratio indicated that the productivity was increased 36% when the N:P ratio was close to 1 (111.96 mg L?1 day?1), but for a complete phosphorus removal a 5:1 N:P ratio with nitrate concentrations ≤125 mg?L?1 is recommended. The isolated microalgae strain Chlorella sp. ACUF_802 showed versatility to grow in the synthetic industrial wastewaters tested and can be considered as an appropriate organism for nitrogen removal from industrial wastewaters in the presence of an organic or inorganic carbon source.  相似文献   

14.
Metamifop is universally used in agriculture as a post-emergence aryloxyphenoxy propionate herbicide (AOPP), however its microbial degradation mechanism remains unclear. Consortium ME-1 isolated from AOPP-contaminated soil can degrade metamifop completely after 6 days and utilize it as the carbon source for bacterial growth. Meanwhile, consortium ME-1 possessed the ability to degrade metamifop stably under a wide range of pH (6.0–10.0) or temperature (20–42 °C). HPLC–MS analysis shows that N-(2-fluorophenyl)-2-(4-hydroxyphenoxy)-N-methyl propionamide, 2-(4-hydroxyphenoxy)-propionic acid, 6-chloro-2-benzoxazolinone and N-methyl-2-fluoroaniline, were detected and identified as four intermediate metabolites. Based on the metabolites identified, a putative metabolic pathway of metamifop was proposed for the first time. In addition, the consortium ME-1 was also able to transform or degrade other AOPP such as fenoxaprop-p-ethyl, clodinafop-propargyl, quizalofop-p-ethyl and cyhalofop-butyl. Moreover, the community structure of ME-1 with lower microbial diversity compared with the initial soil sample was investigated by high throughput sequencing. β-Proteobacteria and Sphingobacteria were the largest class with sequence percentages of 46.6% and 27.55% at the class level. In addition, 50 genera were classified in consortium ME-1, of which Methylobacillus, Sphingobacterium, Bordetella and Flavobacterium were the dominant genera with sequence percentages of 25.79, 25.61, 14.68 and 9.55%, respectively.  相似文献   

15.
The hazardous potential of the Metosulam herbicide, particularly the cytogenetic and physiological effects on Vicia faba cv Assuit 25 plants has been studied. The results showed that the mitotic index (MI) decreased and chromosomal aberrations frequency increased by increasing of the concentration of herbicide and prolonging the duration of treatment. In the roots treated with highest concentration used (1 × 10?5 %) for 24 h, complete inhibition of cell division was observed. The chromosomal anomalies include chromosomal bridges and breaks that are regarded were indicative of a mutagenic potential of the herbicide. Seedling growth (fresh and dry weight) adversely affected as the duration and concentration of Metosulam herbicide increased. Soluble sugars, soluble proteins, total free amino acids and photosynthetic pigment content decreased significantly in root, stem and leaves of Vicia faba with increasing both the herbicide concentration and treatment duration. In contrast, proline content was highly accumulated, especially at the highest concentration (10?4 %) and the longest duration used (24 h). The results of antioxidant enzymes reveal that while the peroxidase activity decreased by increasing the concentration of herbicide and duration, the activities of catalase and ascorbate peroxidase increased.  相似文献   

16.
Pseudoxanthomonas sp. RN402 was capable of degrading diesel, crude oil, n-tetradecane and n-hexadecane. The RN402 cells were immobilized on the surface of high-density polyethylene plastic pellets at a maximum cell density of 108 most probable number (MPN) g?1 of plastic pellets. The immobilized cells not only showed a higher efficacy of diesel oil removal than free cells but could also degrade higher concentrations of diesel oil. The rate of diesel oil removal by immobilized RN402 cells in liquid culture was 1,050 mg l?1 day?1. Moreover, the immobilized cells could maintain high efficacy and viability throughout 70 cycles of bioremedial treatment of diesel-contaminated water. The stability of diesel oil degradation in the immobilized cells resulted from the ability of living RN402 cells to attach to material surfaces by biofilm formation, as was shown by CLSM imaging. These characteristics of the immobilized RN402 cells, including high degradative efficacy, stability and flotation, make them suitable for the purpose of continuous wastewater bioremediation.  相似文献   

17.
The use of pesticides on sandy soils and on many non-agricultural areas entails a potentially high risk of water contamination. This study examined leaching of the herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA) after bioaugmentation in sand with differently formulated and stored Sphingobium sp. T51 and at different soil moisture contents. Dry formulations of Sphingobium sp. T51 were achieved by either freeze drying or fluidised bed drying, with high initial cell viability of 67–85 %. Storage stability of T51 cells was related to formulation excipient/carrier and storage conditions. Bacterial viability in the fluidised bed-dried formulations stored at 25 °C under non-vacuum conditions was poor, with losses of at least 97 % within a month. The freeze-dried formulations could be stored substantially longer, with cell survival rates of 50 %, after 6 months of storage at the same temperature under partial vacuum. Formulated and long-term stored Sphingobium cells maintained their MCPA degradation efficacy and reduced MCPA leaching as efficiently as freshly cultivated cells, by at least 73 % when equal amounts of viable cells were used. The importance of soil moisture for practical field bioaugmentation techniques is discussed.  相似文献   

18.
In this study, anammox bacteria were rapidly enriched in sequencing batch biofilm reactors (SBBRs) with different inoculations. The activated sludge taken from a sequencing batch reactor was used and inoculated to SBBR1, while SBBR2 was seeded with stored anaerobic sludge from an upflow anaerobic fixed bed (2-year stored at 5–15 °C). Nitrogen removal performance, anammox activity, biofilm characteristics and variation of the microbial community were evaluated. The maximum total nitrogen loading rate (NLR) of SBBR1 gradually reached to 1.62 kg?N/(m3/day) with a removal efficiency higher than 88 % and the NLR of SBBR2 reached to 1.43 kg?N/(m3/day) with a removal efficiency of 86 %. SBBR2 was more stable compared to SBBR1. These results, combined with molecular techniques such as scanning electron microscope, fluorescence in situ hybridization, and terminal restriction fragment length polymorphism, indicated that different genera of anammox bacteria became dominant. This research also demonstrates that SBBR is a promising bioreactor for starting up and enriching anammox bacteria.  相似文献   

19.
The kinetic behavior, oxidizing ability and tolerance to m-cresol of a nitrifying sludge exposed to different initial concentrations of m-cresol (0–150 mg C L?1) were evaluated in a sequencing batch reactor fed with 50 mg NH4 +-N L?1 and operated during 4 months. Complete removal of ammonium and m-cresol was achieved independently of the initial concentration of aromatic compound in all the assays. Up to 25 mg m-cresol-C L?1 (C/N ratio of 0.5), the nitrifying yield (Y-NO3 ?) was 0.86 ± 0.05, indicating that the nitrate was the main product of the process; no biomass growth was detected. From 50 to 150 mg m-cresol-C L?1 (1.0 ≤ C/N ≤ 3.0), simultaneous microbial growth and partial ammonium-to-nitrate conversion were obtained, reaching a maximum microbial total protein concentration of 0.763 g L?1 (247 % of its initial value) and the lowest Y-NO3 ? 0.53 ± 0.01 at 150 mg m-cresol-C L?1. m-Cresol induced a significant decrease in the values of both specific rates of ammonium and nitrite oxidation, being the ammonium oxidation pathway the mainly inhibited. The nitrifying sludge was able to completely oxidize up to 150 mg m-cresol-C L?1 by SBR cycle, reaching a maximum specific removal rate of 6.45 g m-cresol g?1 microbial protein-N h?1. The number of SBR cycles allowed a metabolic adaptation of the nitrifying consortium since nitrification inhibition decreased and faster oxidation of m-cresol took place throughout the cycles.  相似文献   

20.
The possibilities of parallel lactic acid and biomass production in batch and fed-batch fermentation on distillery stillage from bioethanol production were studied. The highest lactic acid yield and productivity of 92.3 % and 1.49 g L?1 h?1 were achieved in batch fermentation with initial sugar concentration of 55 g L?1. A significant improvement of the process was achieved in fed-batch fermentation where the concentration of lactic acid was increased to 47.6 % and volumetric productivity for 21 % over the batch process. A high number of Lactobacillus rhamnosus ATCC 7469 viable cells of 109 CFU ml?1 was attained at the end of fed-batch fermentation. The survival of 92.9 % of L. rhamnosus cells after 3 h of incubation at pH 2.5 validated that the fermentation media remained after lactic acid removal could be used as a biomass-enriched animal feed thus making an additional value to the process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号