首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of ammonium in a chemically defined maturation medium on oocyte nuclear maturation and subsequent embryonic development of pigs after in vitro fertilization (IVF) and parthenogenetic activation (PA) were examined. Cumulus–oocyte complexes were matured in Purdue Porcine Medium (PPM) supplemented with 0 mM, 0.02 mM, 0.2 mM, 2 mM, or 20 mM ammonium chloride, or TCM199 with 10% porcine follicle fluid (TCM + pFF; positive control) at 38.7 °C in 7% CO2 in air for 40–44 h. No significant difference (P > 0.05) in nuclear maturation was found between oocytes matured in TCM + pFF or PPM with 0 mM, 0.02 mM and 0.2 mM ammonium chloride. However, nuclear maturation was decreased (P < 0.05) in oocytes matured in PPM with 2 mM or 20 mM ammonium. After IVF, oocytes matured in PPM with 20 mM ammonium resulted in embryos with reduced (P < 0.05) embryonic cleavage and blastocyst development than all other treatment groups. After PA, oocytes matured in PPM with 20 mM ammonium resulted in embryos with lesser (P < 0.05) embryonic cleavage compared to TCM + pFF. However, PA embryos derived from oocytes matured in PPM with both 2 mM and 20 mM ammonium had reduced (P < 0.05) blastocyst development compared with TCM + pFF. These results demonstrate the detrimental effect of ammonium during in vitro oocyte maturation on nuclear progression to metaphase II. Additionally, the presence of ammonium during in vitro maturation negatively influences subsequent embryonic development, although PA embryos appear to be more sensitive to the negative effects of ammonium during oocyte maturation than do IVF embryos.  相似文献   

2.
Supplementation of IVM medium with cysteamine, beta-mercaptoethanol, cysteine and cystine induced bovine oocyte glutathione (GSH) synthesis, but only the effect of cysteamine on the developmental competence of these oocytes was tested. During IVM of sheep oocytes, cysteamine but not beta-mercaptoethanol increased embryo development. However, it is not known how long the high intracellular oocyte GSH levels obtained after IVM with thiol compounds, can be maintained. Thus, the present study was carried out to evaluate the effects of supplementing maturation medium with 100 microM beta-mercaptoethanol, 0.6 mM cysteine and 0.6 mM cystine on 1) intracellular GSH level after IVM, 2) after IVF, 3) in 6 to 8-cell embryos and 4) on embryo development. In oocytes after IVM and in presumptive zygotes after IVF, intracellular GSH levels were significantly higher in the treated groups (P < 0.05). While, GSH content in 6 to 8-cell embryos was similar among treatment groups (P > 0.05). Differences in cleavage rates and the percentage of embryos that developed to morula and blastocyst stages were significantly higher (P < 0.05) for treated oocytes than for those matured in the control medium. We conclude from the results that the high intracellular GSH levels after induction of GSH synthesis in bovine IVM by thiol compounds remain during IVF and are still present at the beginning of IVC, improving developmental rates. Moreover, the results indicate that this metabolic pathway is an important component of the cytoplasmic maturation process that affects the subsequent steps of in vitro embryo production.  相似文献   

3.
Resazurin is a redox dye (7-hydroxy-3H-phenoxazin-3-one-10-oxide) used for assessing potential fertility of spermatozoa and functional status of eukaryotic cells. In this study, the fertilizing capacity of spermatozoa treated with resazurin and effects of resazurin on bovine embryo development in vitro was examined. Abattoir-derived bovine oocytes were collected and subjected to in vitro maturation (IVM), fertilization (IVF) and culture (IVC). In Experiment 1, bovine oocytes (n=2767) were fertilized with spermatozoa exposed to resazurin (17.6 μg/ml) for 0, 15, 30, 60 min, respectively. There was no significant (P>0.05) difference with respect to oocyte cleavage, morula and blastocyst production between treatments. In Experiment 2, oocytes (n=1671) were treated with resazurin (1.8 μg/ml) during IVM, IVF, IVC, respectively, or during the entire IVM, IVF and IVC procedures. There was no significant (P>0.05) difference in cleavage rates. However, the proportion of embryos that developed into blastocysts, expanded and hatched blastocysts in those groups in which oocytes/embryos were treated with resazurin during IVC or IVM/IVF/IVC was significantly (P<0.05) less than those exposed to resazurin during IVM only, or during IVF only. We conclude that resazurin did not have significant adverse effects on fertilizing capability of bovine spermatozoa; however, extended treatment of embryos with resazurin may be detrimental to embryonic development.  相似文献   

4.
Ali AA  Bilodeau JF  Sirard MA 《Theriogenology》2003,59(3-4):939-949
Antioxidants may be beneficial additives to synthetic culture media because these well defined media lack serum or other macromolecules that serve as reactive oxygen species scavengers. In this study, three separate experiments were performed to determine the effects of antioxidants on the development of oocytes to the morula and blastocyst stage when added during in vitro maturation (IVM) of bovine oocytes, during in vitro fertilization (IVF), and during embryo culture for the first 72 h of the development period. Bovine oocytes were matured, fertilized (under 20% O(2)), and embryos were cultured (under 7% O(2)) in defined conditioned medium in vitro with or without supplementation with the antioxidant cysteine, N-acetyl-L-cysteine (NAC), catalase and superoxide dismutase (SOD). Significant improvements in the proportion of oocytes undergoing morula and blastocyst development (33.3% versus 20.3%, P<0.05) were achieved when cysteine (0.6 mM) was added to the maturation medium as compared to control medium without antioxidant supplementation. However, the addition of NAC (0.6mM), catalase (5 or 127 U/ml) or SOD (10 or 1000 U/ml) to the maturation medium did not improve the proportion of oocytes undergoing morula and blastocyst development. During the IVF period, addition of antioxidants (cysteine or NAC 0.6mM, catalase 127U/ml, SOD 100U/ml) significantly reduced the subsequent rate of bovine embryo development to the morula and blastocyst stage (P<0.05). In a defined medium for embryo culture (7% O(2)), the addition of cysteine improved the development of bovine embryos while NAC, catalase and SOD had no positive effect on embryonic development. Our study showed that medium supplementation with cysteine during IVM and in vitro culture (IVC) improved the rate of bovine embryo development, in contrast to extracellular antioxidants like catalase and SOD that caused no improvement.  相似文献   

5.
A series of experiments were designed to study the effect of elevated temperatures on developmental competence of bovine oocytes and embryos produced in vitro. In experiment 1, the effect of heat shock (HS) by a mild elevated temperature (40.5°C) for 0, 30, or 60 min on the viability of in vitro matured (IVM) oocytes was tested following in vitro fertilization (IVF) and culture. No significant difference was observed between the control (39°C) and the heat‐treated groups in cleavage, blastocyst formation, or hatching (P > 0.05). In experiment 2, when the HS temperature was increased to 41.5°C, neither the cleavage rate nor blastocyst development was affected by treatment. However, the rate of blastocyst hatching appeared lower in the HS groups (13% in control group vs. 3.9% and 5.6% in 30 min and 60 min, respectively; P < 0.05). When IVM oocytes were treated at 43°C prior to IVF (experiment 3), no difference was detected in blastocyst and expanded blastocyst development following heat treatment for 0, 15, or 30 min, but heat treatment of oocytes for 45 or 60 min significantly reduced blastocyst and expanded blastocyst formation (P < 0.05). In experiment 4, the thermotolerance of day 3 and day 4 bovine IVF embryos were compared. When embryos were pre‐treated with a mild elevated temperature (40.5°C) for 1 hr, and then with a higher temperature (43°C) for 1 hr, no improvement in thermotolerance of the embryos was observed as compared to those treated at 43°C alone. However, a higher thermotolerance was observed in day 4 than day 3 embryos. In conclusion, treatment at 43°C, but not 40.5°C or 41.5°C significantly reduced oocyte developmental competence. An increase in thermotolerance was observed from day 3 to day 4 of in vitro embryonic development, which corresponds to the maternal to zygotic transition of gene expression in bovine embryos. Mol. Reprod. Dev. 53:336–340, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

6.
Cryopreservation of bovine oocytes would be beneficial both for nuclear transfer and for preservation efforts. The overall objective of this study was to evaluate the viability as well as the cryodamage to the nucleus vs. cytoplasm of bovine oocytes following freezing-thawing of oocytes at immature (GV) and matured (MII) stages using in vitro fertilization (IVF), parthenogenetic activation, or nuclear transfer assays. Oocytes were collected from slaughterhouse ovaries. Oocytes at the GV, MII, or MII but enucleated (MIIe) stages were cryopreserved in 5% (v/v) ethylene glycol; 6% (v/v) 1,2-propanediol; and 0.1-M sucrose in PBS supplemented with 20% (v/v) fetal bovine serum. Frozen-thawed oocytes were subjected to IVF, parthenogenetic activation, or nuclear transfer assays. Significantly fewer GV oocytes survived (i.e., remained morphologically intact during freezing-thawing) than did MII oocytes (47% vs. 84%). Subsequent development of the surviving frozen-thawed GV and MII oocytes was not different (58% and 60% cleavage development; 7% and 12% blastocyst development at Day 9, respectively, P > 0.05). Parthenogenetic activation of frozen-thawed oocytes resulted in significantly lower rates of blastocyst development for the GV than the MII oocyte groups (1% vs. 14%). Nuclear transfer with cytoplasts derived from frozen-thawed GV, MII, MIIe, and fresh-MII control oocytes resulted in 5%, 16%, 14%, and 17% blastocyst development, respectively. However, results of preliminary embryo transfer trials showed that fewer pregnancies were produced from cloned embryos derived from frozen oocytes or cytoplasts (9%, n = 11 embryos) than from fresh ones (19%, n = 21 embryos). Transfer of embryos derived by IVF from cryopreserved GV and MII oocytes also resulted in term development of calves. Our results showed that both GV and MII oocytes could survive freezing and were capable of developing into offspring following IVF or nuclear transfer. However, blastocyst development of frozen-thawed oocytes remains poorer than that of fresh oocytes, and our nuclear transfer assay suggests that this poorer development was likely caused by cryodamage to the oocyte cytoplasm as well as to the nucleus. Mol. Reprod. Dev. 51:281–286, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.

Background

Approximately 20% of oocytes are classified as immature and discarded following intracytoplasmic sperm injection (ICSI) procedures. These oocytes are obtained from gonadotropin-stimulated patients, and are routinely removed from the cumulus cells which normally would mature the oocytes. Given the ready access to these human oocytes, they represent a potential resource for both clinical and basic science application. However culture conditions for the maturation of cumulus-free oocytes have not been optimized. We aimed to improve maturation conditions for cumulus-free oocytes via culture with ovarian paracrine/autocrine factors identified by single cell analysis.

Methodology/Principal Finding

Immature human oocytes were matured in vitro via supplementation with ovarian paracrine/autocrine factors that were selected based on expression of ligands in the cumulus cells and their corresponding receptors in oocytes. Matured oocytes were artificially activated to assess developmental competence. Gene expression profiles of parthenotes were compared to IVF/ICSI embryos at morula and blastocyst stages. Following incubation in medium supplemented with ovarian factors (BDNF, IGF-I, estradiol, GDNF, FGF2 and leptin), a greater percentage of oocytes demonstrated nuclear maturation and subsequently, underwent parthenogenesis relative to control. Similarly, cytoplasmic maturation was also improved as indicated by development to blastocyst stage. Parthenogenic blastocysts exhibited mRNA expression profiles similar to those of blastocysts obtained after IVF/ICSI with the exception for MKLP2 and PEG1.

Conclusions/Significance

Human cumulus-free oocytes from hormone-stimulated cycles are capable of developing to blastocysts when cultured with ovarian factor supplementation. Our improved IVM culture conditions may be used for obtaining mature oocytes for clinical purposes and/or for derivation of embryonic stem cells following parthenogenesis or nuclear transfer.  相似文献   

8.
C-type natriuretic peptide (CNP) has been considered as a physiological meiotic inhibitor that stimulates the cGMP production by cumulus cell natriuretic peptide receptor 2 (NPR2), which inhibits oocyte phosphodiesterase type 3 activity and increases cAMP. In this study, we explored the effect of CNP pretreatment on the in vitro maturation (IVM) of bovine oocytes by examining changes in cleavage rate, blastocyst formation, mitochondrial DNA (mtDNA) copy number, reactive oxygen species (ROS) level, glutathione (GSH) content, and redox state. Our results showed that 200 nM CNP could effectively maintain meiotic arrest of bovine oocytes in vitro within 6 h. The two-step IVM system in which oocytes were pretreated with 200 nM CNP for 6 h and then cultured IVM for 28 h yielded a significantly (P < 0.05) increased blastocyst rate and cell number after in vitro fertilization (IVF) while compared to the conventional one-step IVM method. In addition, in comparison with the conventional 24-h matured oocyte, oocytes pretreated with 200 nM CNP for 6 h followed by 28 h IVM resulted in significantly (P < 0.05) higher mtDNA copy number and ROS levels in oocytes, while GSH level significantly (P < 0.05) decreased. Remarkably, regardless of treatment, no changes were observed in FAD++, NAD(P)H autofluorescence intensity, and redox ratio (FAD++/NAD(P)H) within the oocytes, maintaining a healthy metabolic equilibrium of redox throughout the two-step IVM. In conclusion, these results indicate that CNP pretreatment could dramatically improve the quality of bovine oocytes during in vitro maturation.  相似文献   

9.
The expression pattern of glucose metabolism genes (hexokinase, phosphofructokinase, glucose-6-phosphate dehydrogenase [G6PDH], lactate dehydrogenase [LDH], and pyruvate dehydrogenase [PDH]) were studied in buffalo in vitro–matured oocytes and in vitro–produced embryos cultured under different glucose concentrations (0 mM, 1.5 mM, 5.6 mM, and 10 mM) during in vitro maturation of oocytes and culture of IVF produced embryos. The expression of the genes varied significantly over the cleavage stages under different glucose concentrations. Developmental rate of embryos was highest under a constant glucose level (5.6 mM) throughout during maturation of oocytes and embryo culture. Expression pattern of glucose metabolism genes under optimum glucose level (5.6 mM) indicated that glycolysis is the major pathway of glucose metabolism during oocyte maturation and early embryonic stages (pre-maternal to zygotic transition [MZT]) and shifts to oxidative phosphorylation during post-MZT stages in buffalo embryos. Higher glucose level (10 mM) caused abrupt changes in gene expression and resulted in shifting toward anaerobic metabolism of glucose during post-MZT stages. This resulted in decreased development rate of embryos during post-MZT stages. High expression of LDH and PDH in the control groups (0 mM glucose) indicated that in absence of glucose, embryos try to use available pyruvate and lactate sources, but succumb to handle the post-MZT energy requirement, resulting to poor development rate. Expression pattern of G6PDH during oocyte maturation as well early embryonic development was found predictive of quality and development competence of oocytes/ embryos.  相似文献   

10.
11.
Park YS  Lin YC 《Theriogenology》1993,39(2):475-484
The purpose of this study is to evaluate the effect of EGF and defined simple media on in vitro bovine oocyte maturation and early embryonic development. Bovine follicular oocytes were matured in vitro and co-cultured with frozen-thawed bull sperm, which was capacitated with Hepes buffered saline (HBS) solution. After incubation of oocyte-sperm complexes for 4 days, the cleavage rate was evaluated. The results obtained were as follows: 1) When bovine oocytes were matured and embryos were developed in Park-Lin medium 1 (PL(1)) containing fetal calf serum (FCS) or EGF + bovine serum albumin (BSA), the latter treatment was more effective in inducing embryonic cleavage (18%) than FCS alone (10%). 2) When bovine oocytes were matured in Park-Lin medium 2 (PL(2)) without EGF and the subsequent embryos were developed in PL(2) medium with EGF, the cleavage rate was 22.6%. 3) When bovine oocytes were matured in PL(2) medium with EGF and then the embryos were developed in PL(2) medium with EGF, the cleavage rate was 35.8%. 4) When bovine oocytes were matured in Park-Lin medium 3 (PL(3)) without EGF and then the embryos were developed in PL(3) medium, the cleavage rate was 50%. 5) When bovine oocytes and resulting embryos were matured in PL(3) medium with EGF, the cleavage rate was 53%. 6) The parthenogenesis rate induced by PL(3) medium in our current study was comparable to the findings reported by other laboratories. These results suggest that EGF stimulates in vitro bovine oocyte maturation and subsequently affects embryonic development. It is suggested that PL(3) medium is a better defined simple medium than the other media currently used by other laboratories for in vitro bovine oocyte maturation.  相似文献   

12.
The effects of nicotine on nuclear maturation and meiotic spindle dynamics of bovine oocytes and subsequent embryonic development were investigated. Maturation rates (85%-94%) derived from nicotine treatments at 0.01 to 1.0 mM were similar to the control (86%), but significantly decreased at 2.0 to 6.0 mM. Haploid complements of metaphase II oocytes in 0.01 to 1.0 mM nicotine (approximately 90%) were similar to the control, while lower (ranged from 63% to 76%, P < 0.05 or P < 0.01) haploid oocytes were observed in the 2.0 to 6.0 mM nicotine groups. The majority of the PB1-free oocytes derived from 3.0 to 6.0 mM nicotine treatments were diploidy (2n = 60). Spindle microtubules changed from characteristically being asymmetrical in the controls to being equally distributed into two separate chromosome groups in the nicotine treatments. Nicotine disorganized the microfilament organization and inhibited the movement of anaphase or telophase chromosomes to the cortical area. The inhibited two chromosome groups became two spindles that either moved close in proximity or merged entirely together resulting in diploidy within the affected oocyte. Nicotine treatment significantly reduced the rate of cleavage and blastocyst development after parthenogenetic activation. Diploidy and cell number were drastically reduced in the resultant blastocysts. In conclusion, nicotine can alter the normal process of bovine oocyte meiosis and affects subsequent embryonic development.  相似文献   

13.
The objectives of this study were 1) to measure cleavage, blastocyst formation, and blastocyst hatching after in vitro maturation (IVM), fertilization (IVF) and culture (IVC) of oocytes aspirated from pregnant versus nonpregnant cows, and 2) to compare embryo development in co-culture with bovine oviductal epithelial cells versus cumulus cells. No differences in cleavage (38 versus 40%), blastocyst formation (13 versus 13%), or blastocyst hatching (53 versus 51%) were observed for in vitro-matured, fertilized, and cultured oocytes from pregnant versus nonpregnant cows, respectively (P > 0.05), indicating that nonpregnant and early-pregnant cows are equally acceptable donors of oocytes for IVM/IVF/IVC procedures. Cleavage (36 versus 40%), blastocyst formation (11 versus 12%), and blastocyst hatching (50 versus 55%) were not different for embryos co-cultured with oviductal epithelial cells versus cumulus cells (P > 0.05). Thus, equivalent embryo development can be obtained with co-culture systems commonly used for in vitro-derived bovine embryos. These results help to define variables that affect comparison of results across laboratories and that are relevant to the practical application of IVM/IVF/IVC procedures to cattle.  相似文献   

14.
SCNT technology has been successfully used to clone a variety of mammals, but the cloning efficiency is very low. This low efficiency is likely due to the incomplete reprogramming of SCNT embryos. Histone modification and DNA methylation may participate in these events. Thus, it would be interesting to attempt to improve the efficiency of SCNT by using a HDACi VPA. In order to guarantee the effect of VPA and reduce its cytotoxicity, a comprehensive analysis of the cell proliferation and histone modification was performed. The results showed that 0.5 and 1 mM VPA treatment for 24 h were the optimal condition. According to the results, H3K4me3 was increased in 0.5 and 1 mM VPA groups, whereas H3K9me2 was significantly decreased. These are the signals of gene-activation. In addition, VPA treatment led to the overexpression of Oct4 and Nanog. These indicated that VPA-treated cells had similar patterns of histone to zygotic embryos, and may be more favorable for reprograming. A total of 833 cloned embryos were produced from the experimental replicates of VPA-treated donor cells. In 1 mM treatment group, the blastocyst rates were significantly increased compared with control. At the same time, our findings demonstrated the interrelation between DNA methylation and histone modifications.  相似文献   

15.
Zinc (Zn) is an essential trace element that is required during mammalian developmental processes. The objective of this study was to investigate the effects of Zn supplementation during in vitro maturation (IVM) on the developmental capacity of yak (Bos grunniens) oocytes. Cumulus expansion, nuclear maturation, intracellular glutathione (GSH), reactive oxygen species (ROS) levels, superoxide dismutase (SOD) activity, subsequent embryonic development, and the expression of Zn transporters (ZnTs) and Zrt and Irt-like proteins (ZiPs) were evaluated. The Zn concentrations in yak plasma and follicular fluid were 0.740?±?0.012 and 0.382?±?0.009 μg/mL, respectively. The cumulus expansion did not show significant differences in COCs after matured with or without Zn supplementation (P?>?0.05). The intracellular GSH was higher in oocytes matured with 1 or 2 mg/L Zn than in control group (0 mg/L) (P?<?0.05). However, ROS levels of oocytes matured with 1 or 2 mg/L Zn were reduced significantly compared with the control and 0.5 mg/L groups (P?<?0.05). The SOD activity was increased significantly after Zn supplementation. The cleavage rate was not significantly different after Zn supplementation (P?>?0.05). Percentages of matured oocytes that developed into the blastocyst stage after IVF were 47.9, 50.5, 60.4, and 58.9% for 0, 0.5, 1, and 2 mg/L Zn groups, respectively. Gene expression analysis revealed that the expression patterns associated with Zn were changed after Zn supplementation. In conclusion, Zn supplementation to IVM improved yak oocyte maturation and subsequent development by increasing GSH and SOD activity, decreasing ROS in oocytes.  相似文献   

16.
17.
Several contemporary micromanipulation techniques, such as sperm microinjection, nuclear transfer, and gene transfer by pronuclear injection, require removal of cumulus cells from oocytes or zygotes at various stages. In humans, the cumulus cells are often removed after 15–18 hr of sperm-oocyte coincubation to assist the identification of the fertilization status. This study was designed to evaluate the function of cumulus cells during oocyte maturation, fertilization, and in vitro development in cattle. Cumulus cells were removed before and after maturation and after fertilization for 0,7,20, and 48 hr. The cumulus-free oocytes or embryos were cultured either alone or on cumulus cell monolayers prepared on the day of maturation culture. Percentages of oocyte maturation, fertilization, and development to cleavage, morula, and blastocyst stages and to expanding or hatched blastocysts were recorded for statistical analysis by categorical data modeling (CATMOD) procedures. Cumulus cells removed before maturation significantly reduced the rate of oocyte maturation (4–26% vs. 93–96%), fertilization (0–9% vs. 91–92%), and in vitro development at all stages evaluated. Cumulus cells removed immediately prior to in vitro fertilization (IVF) or 7 hr after IVF reduced the rates of fertilization (58–60% and 71%, respectively, vs. 91–92% for controls), cleavage development (40–47% and 53–54% vs. 74–78% for controls), and morula plus blastocyst development (15% and 24% vs. 45%, P < 0.05). Cumulus cell co-culture started at various stages had no effect on fertilization and cleavage development but significantly improved rates of embryo development to morula or blastocyst stages (P < 0.05). Cumulus cell removal at 20 hr after IVF resulted in similar development to controls (P > 0.05) at all stages tested in this study. The intact state of surrounding cumulus cells of oocytes or embryos appears to be beneficial before or shortly after insemination (at or before 7 hr of IVF) but not essential at 20 hr after IVF. © 1995 Wiley-Liss, Inc.  相似文献   

18.
Lipid content in mammalian oocytes or embryos differs among species, with bovine and porcine oocytes and embryos showing large cytoplasmic droplets. These droplets are considered to play important roles in energy metabolism during oocyte maturation, fertilisation and early embryonic development, and also in the freezing ability of oocytes or embryos; however, their detailed distribution or function is not well understood. In the present study, changes in the distribution and morphology of porcine lipid droplets during in vivo and in vitro fertilisation, in contrast to parthenogenetic oocyte activation, as well as during their development to blastocyst stage, were evaluated by transmission electron microscopy (TEM). The analysis of semi-thin and ultra-thin sections by TEM showed conspicuous, large, electron-dense lipid droplets, sometimes associated with mitochondrial aggregates in the oocytes, irrespective of whether the oocytes had been matured in vivo or in vitro. Immediately after sperm penetration, the electron density of the lipid droplets was lost in both the in vivo and in vitro oocytes, the reduction being most evident in the oocytes developed in vitro. Density was restored in the pronculear oocytes, fully in the in vivo specimens but only partially in the in vitro ones. The number and size of the droplets seemed, however, to have decreased. At 2- to 4-cell and blastocyst stages, the features of the lipid droplets were almost the same as those of pronuclear oocytes, showing a homogeneous or saturated density in the in vivo embryos but a marbled or partially saturated appearance in the in vitro embryos. In vitro matured oocytes undergoing parthenogenesis had lipid droplets that resembled those of fertilised oocytes until the pronuclear stage. Overall, results indicate variations in both the morphology and amount of cytoplasmic lipid droplets during porcine oocyte maturation, fertilisation and early embryo development as well as differences between in vivo and in vitro development, suggesting both different energy status during preimplantation development in pigs and substantial differences between in vitro and in vivo development.  相似文献   

19.
Increased amounts of reactive oxygen species (ROS) during in vitro culture may cause cytotoxic damage to gametes and embryos. The main purpose of this study was to investigate the effect of glutathione (GSH), a ROS scavenger, supplemented during IVF of bovine oocytes on embryo development using spermatozoa from different bulls. The following experiments were performed: 1) matured COCs were fertilized in the absence or presence of 1 mM GSH using semen from 4 bulls (Bulls A, B, C and D); 2) matured COCs were fertilized in the absence or presence of 1 mM GSH using semen from Bull C to examine sperm penetration, pronuclear formation and apposition; 3) COCs were fertilized with in the presence of either 0, 0.1, 1.0 or 10 mM GSH to examine the effect of GSH concentration using sperm from Bull C; 4) concentrations of GSH were measured both in the medium and in the oocytes during IVF. Glutathione at 1 mM in IVF medium affected the blastocyst formation, but not the cleavage rate. The effect on blastocyst formation was bull dependent: semen from Bull B and D had a negative, that from Bull C a positive and the one from Bull A no effect. The positive effect of Bull C semen increased the rate of blastocyst formation from 20.1 to 27.3% in control and GSH-treated samples, respectively. The increased rate was due to more zygotes reaching the 8-cell or greater stage by Day 4 after IVF. There was no change in the fertilization or cleavage rates. The GSH was still stable after 18 h incubation in IVF medium, and there was a dose-dependent increase in the GSH concentration in the oocytes. It is concluded that the effect of GSH during IVF on the proportion of blastocysts is dependent on both bull and GSH concentration.  相似文献   

20.
Nandi S  Chauhan MS  Palta P 《Theriogenology》1998,50(8):1251-1262
The objective of the present study was to investigate the effects of sperm concentration and presence or absence of cumulus cells on fertilization, cleavage rate and subsequent embryonic development upto the blastocyst stage in buffalo. Cumulus-oocyte-complexes (COCs) obtained from slaughterhouse ovaries were matured in vitro in TCM-199 + 10% FBS + 5 micrograms/mL FSH-P for 24 h. After maturation the COCs were either used as such (cumulus-intact) or freed from attached cumulus cells by repeated pipetting (cumulus-free). Frozen-thawed buffalo spermatozoa were treated with 10 micrograms/mL heparin and 2.5 mM caffeine for sperm capacitation. Oocytes were fertilized in vitro with 1 to 2, 4 to 5 or 9 to 10 million sperm/mL and the cleavage rate was recorded 42 to 44 h post insemination. The cleaved embryos were co-cultured with buffalo oviductal epithelial cells for 10 d post insemination, and the uncleaved oocytes were fixed and stained with aceto-orcein for determination of the penetration rate. The cleavage rate and the proportion of cleaved embryos that developed to morula and blastocyst stages were significantly higher (P < 0.05) whereas the proportion of degenerated oocytes and those that became arrested at the 2 to 16-cell stage were significantly lower (P < 0.05) with cumulus-intact than with cumulus-free oocytes at the 3 sperm concentrations. Increasing the sperm concentration increased the cleavage rate significantly (P < 0.05) from 1 to 2 million through 9 to 10 million sperm/mL but had no effect on the proportion of cleaved embryos that developed to morula and blastocyst stages. In conclusion, the results of the present study suggest that cumulus cells have a positive influence on fertilization, cleavage and subsequent embryonic development. Increase in sperm concentration increases cleavage rate without affecting subsequent embryonic development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号