首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The relatedness of a series of T-even like phages which use the Escherichia coli outer membrane protein OmpA as a receptor, and the classical phages T2, T4 and T6 has been investigated. Immunoelectron microscopy and the pattern of phage resistance in bacterial mutants revealed that: (i) phages of this morphology do not necessarily cross-react serologically; (ii) phages using different receptors may bind heterologous IgG everywhere except to the tip (comprising approximately 10% of one fiber polypeptide) of the long tail fibers; (iii) cross-reacting OmpA-specific phages may bind heterologous IgG only to the tip of these fibers: (iv) OmpA-specific phages not cross-reacting at the tip of the tail fibers use different receptor sites on the protein. Absence of cross-reactivity appears to reflect high degrees of dissimilarity. A DNA probe consisting of genes encoding the two most distal tail fiber proteins of T4 detected homologies only in DNA from phages serologically cross-reacting at this fiber. Even under conditions of low stringency, allowing the formation of stable hybrids with almost 30% base mismatch, no such homologies could be found in serologically unrelated phages. Thus, in the collection of phages examined, there are sets of very similar and very dissimilar tail fiber genes and even of such gene segments.  相似文献   

4.
We have determined the DNA sequence of the bacteriophage P2 tail genes G and H, which code for polypeptides of 175 and 669 residues, respectively. Gene H probably codes for the distal part of the P2 tail fiber, since the deduced sequence of its product contains regions similar to tail fiber proteins from phages Mu, P1, lambda, K3, and T2. The similarities of the carboxy-terminal portions of the P2, Mu, ann P1 tail fiber proteins may explain the observation that these phages in general have the same host range. The P2 H gene product is similar to the products of both lambda open reading frame (ORF) 401 (stf, side tail fiber) and its downstream ORF, ORF 314. If 1 bp is inserted near the end of ORF 401, this reading frame becomes fused with ORF 314, creating an ORF that may represent the complete stf gene that encodes a 774-amino-acid-long side tail fiber protein. Thus, a frameshift mutation seems to be present in the common laboratory strain of lambda. Gene G of P2 probably codes for a protein required for assembly of the tail fibers of the virion. The entire G gene product is very similar to the products of genes U and U' of phage Mu; a region of these proteins is also found in the tail fiber assembly proteins of phages TuIa, TuIb, T4, and lambda. The similarities in the tail fiber genes of phages of different families provide evidence that illegitimate recombination occurs at previously unappreciated levels and that phages are taking advantage of the gene pool available to them to alter their host ranges under selective pressures.  相似文献   

5.
The DNA sequences of genes 37 of bacteriophages T2 and K3 are presented and compared with that of phage T4. The corresponding proteins constitute, as dimers, the part of the long tail fibers that recognizes the bacterial receptor. The CO2H termini of the polypeptides are located at the free ends of the fibers. Morphologically, the three phages are essentially identical, but they use different receptors. The genes from phages T4, T2 and K3 encode proteins consisting of 1026, 1341 and 1243 amino acid residues, respectively. DNA-DNA hybridizations had shown earlier that genes 37, in contrast to the gene for the major capsid protein, of a number of T-even type phages are highly polymorphic. The deduced amino acid sequences now show that this polymorphism extends to the protein primary structures. About 50 NH2-terminal residues are conserved and are probably required for binding to the adjacent protein 36. This area is followed by more or less irregularly spaced regions of non-homology, partial homology or complete homology. The heterogeneity is most prominent in a region encompassing about 600 CO2H-terminal residues of the T2 or K3 proteins. Nevertheless, the amino acid compositions of the three proteins are very similar and all are rich in glycine. It has been found that the receptor specificities of phages K3 and T2 are determined by protein 38, a polypeptide required for the efficient dimerization of protein 37 of phage T4. Proteins 38 of phages K3 and T2 are functionally interchangeable, those of T4 and T2 or K3 are not. Proteins 37 of phages K3 and T2 possess a conserved sequence of 160 CO2H-terminal residues. This area is missing in the T4 protein. This region may serve as a binding site for polypeptides 38 of phages K3 and T2. The overall picture of the protein primary structures of the three phages strongly suggests that the evolution of genes 37, which was most likely driven by selection for variations in receptor recognition specificities, has not been a steady process but has involved loss and gain of segments of DNA.  相似文献   

6.
Sequences of amino acids of some fiber proteins may have a periodic structure. To analyze this periodicity Fourier transform of a mathematical image of symbolic sequence of amino acids in a protein is sometimes used. In this work we employed one (out of few possible) particular way of doing Fourier transform as the most straightforward and optimal. Employing this optimal Fourier transform method we analyzed periodicity of fiber proteins in bacteriophage T4. As a result we managed to confirm that a certain periodicity exists in the investigated proteins. It was found that for a number of proteins the alternation of elements of the same group in the amino acid sequence with a rather small period T = 15 exists, whereas for some other proteins alternations have small periods 10 and 8. The new result is a discovery of relatively large periods of amino acids alternations, which divide the amino acids sequence of the protein into 4 or 6 equal parts. These data on the amino acids periodicity allowed us to align amino acids sequences in accordance with the established periods of both types, in agreement with certain results obtained in X-ray crystallography and electron microscopy experiments.  相似文献   

7.
The amino acid sequence of the adenovirus fibre protein reveals an approximately repeating motif of 15 residues. A diagonal comparison matrix established that these repeats extended from residue 43 to residue 400 of the 581 residue sequence. Assignment of secondary structure combined with model building showed that each 15-residue segment contained two short beta-strands and two beta-bends, one of which incorporated an extra residue in a beta-bulge of the Gx type. The 44 strands together gave a long (210 A) narrow, amphipathic beta-sheet, which could be stabilised by dimer formation to give the shaft of the fibre. The knob could arise from a dimer of the C-terminal 180 residue segment, predicted to be an 8-10 stranded beta-sandwich. This model is consistent with the electron micrographs of the fibre and it was supported by measurements of c.d. and of electron diffraction from microcrystals. The latter gave a pair of wide angle arcs, corresponding to a repeat of 4.7 A, oriented appropriately for a cross-beta structure. The relation of this structure to globular structures is discussed and a folding pathway is proposed. In its general features the structure resembles that proposed for the tail fibre of bacteriophage T4.  相似文献   

8.
About 130 kb of sequence information was obtained from the coliphage JS98 isolated from the stool of a pediatric diarrhea patient in Bangladesh. The DNA shared up to 81% base pair identity with phage T4. The most conserved regions between JS98 and T4 were the structural genes, but their degree of conservation was not uniform. The head genes showed the highest sequence conservation, followed by the tail, baseplate, and tail fiber genes. Many tail fiber genes shared only protein sequence identity. Except for the insertion of endonuclease genes in T4 and gene 24 duplication in JS98, the structural gene maps of the two phages were colinear. The receptor-recognizing tail fiber proteins gp37 and gp38 were only distantly related to T4, but shared up to 83% amino acid identity to other T6-like phages, suggesting lateral gene transfer. A greater degree of variability was seen between JS98 and T4 over DNA replication and DNA transaction genes. While most of these genes came in the same order and shared up to 76% protein sequence identity, a few rearrangements, insertions, and replacements of genes were observed. Many putative gene insertions in the DNA replication module of T4 were flanked by intron-related endonuclease genes, suggesting mobile DNA elements. A hotspot of genome diversification was located downstream of the DNA polymerase gene 43 and the DNA binding gene 32. Comparative genomics of 100-kb genome sequence revealed that T4-like phages diversify more by the accumulation of point mutations and occasional gene duplication events than by modular exchanges.  相似文献   

9.
Despite multiple control measures, Escherichia coli O157:H7 (STEC O157:H7) continues to be responsible for many food borne outbreaks in North America and elsewhere. Bacteriophage therapy may prove useful for controlling this pathogen in the host, their environment and food. Bacteriophage vB_EcoS_AKFV33 (AKFV33), a T5-like phage of Siphoviridae lysed common phage types of STEC O157:H7 and not non-O157 E. coli. Moreover, STEC O157:H7 isolated from the same feedlot pen from which the phage was obtained, were highly susceptible to AKFV33. Adsorption rate constant and burst size were estimated to be 9.31 × 10(-9) ml/min and 350 PFU/infected cell, respectively. The genome of AKVF33 was 108,853 bp (38.95% G+C), containing 160 open reading frames (ORFs), 22 tRNA genes and 32 strong promoters recognized by host RNA polymerase. Of 12 ORFs without homologues to T5-like phages, 7 predicted novel proteins while others exhibited low identity (<60%) to proteins in the National Centre for Biotechnology Information database. AKVF33 also lacked the L-shaped tail fiber protein typical of T5, but was predicted to have tail fibers comprised of 2 novel proteins with low identity (37-41%) to tail fibers of E. coli phage phiEco32 of Podoviridae, a putative side tail fiber protein of a prophage from E. coli IAI39 and a conserved domain protein of E. coli MS196-1. The receptor-binding tail protein (pb5) shared an overall identify of 29-72% to that of other T5-like phages, with no region coding for more than 6 amino acids in common. Proteomic analysis identified 4 structural proteins corresponding to the capsid, major tail, tail fiber and pore-forming tail tip (pb2). The genome of AKFV33 lacked regions coding for known virulence factors, integration-related proteins or antibiotic resistance determinants. Phage AKFV33 is a unique, highly lytic STEC O157:H7-specific T5-like phage that may have considerable potential as a pre- and post-harvest biocontrol agent.  相似文献   

10.
Lysogeny in Leuconostoc oenos.   总被引:2,自引:0,他引:2  
Thirty strains of Leuconostoc oenos were exposed to mitomycin C to induce lysogenic bacteriophages. Lysis curves typical for lysogenic strains were obtained with 19 strains. Indicator strans were found for 17 of these phages. Five were characterized by electron microscopy, lytic spectrum, molecular masses of the proteins, sequencing of five N-terminal amino acids of the two major proteins and DNA analysis (restriction patterns, cross hybridization). The results revealed a very close relationship between the phages. Hybridization experiments between the DNAs of the temperate phages and the appropriate lysogenic strains revealed phage-related sequences in the DNA of the lysogenic strain.  相似文献   

11.
Summary Genes (g) 36 and 37 code for the proteins of the distal half of the long tail fibers of phage T4, gene product (gp) 35 links the distal half to the proximal half of this fiber. The receptor, lipopolysaccharide, most likely is recognized by gp37. Using as probe a restriction fragment consisting of most of g36 and g37 of phage T4 the genes corresponding to g35, g36, and g37 of phages T2 and K3 (using the E. coli outer membrane proteins OmpF and OmpA, respectively, as receptors) have been cloned into plasmid pUC8. Partial DNA sequences of g37 of phage K3 have been determined. One area, corresponding to residues 157 to 210 of the 1026 residue gp37 of phage T4, codes for an identical sequence in phage K3. Another area corresponds to residues 767 to 832 of the phage T4 sequence. Amino acid residues 767 to 832 of the phage T4 sequence are almost identical in both phage proteins while the remainder is rather different. DNAs of T2, T4, T6, another T-even type phage using protein Tsx as a receptor, and 10 different T-even type phages using the OmpA protein as a receptor have been hybridized with restriction fragments covering various parts of the g37 area of phage K3. With probably only one exception all of the 13 phages tested possess unique genes 37 and within the majority of these, sequences highly homologous to parts of g37 of K3 are present in a mosaic type fashion. Other regions of these genes 37 did not show any homology with the K3 probes; in case of the OmpA specific phage M1 absence of homology was evident in most of its g37 even including the area that should serve for recognition of the cellular receptor. In sharp contrast to this situation it was found that a major part of the gene (g23) coding for the major capsid protein is rather highly conserved in all phages studied. The extreme variability in sequences existing in genes 37 might be a consequence of phages during evolution being able to more or less drastically change their receptor specifities.  相似文献   

12.
The effect of chitosan fragments with different degrees of polymerization and the chemical derivatives of chitosan differing in the number of amino groups and total molecule charge on phages T2, T4, and T7 was studied. The interaction of chitosan with bacteriophage particles inactivated them to the extent dependent on the chemical properties of chitosan and its concentration. Phage T2 was found to be most susceptible to inactivation by chitosan. The polycationic nature of chitosan plays an important role in the inactivation of phages. It is assumed that the abnormal rearrangement of the basal plate of phages, the loss of long tail fibers, and, probably, modification of the receptor-recognizing phage proteins may be responsible for the inactivation of coliphages by chitosan.  相似文献   

13.
The distal part of the long tail fibers of the Escherichia coli phage T4 consists of a dimer of protein 37. A fragment of the corresponding gene, encoding 253 amino acids, was inserted into several different sites within the cloned gene for the 325-residue outer membrane protein OmpA. In plasmid pTU T4-5 the fragment was inserted once and in pTU T4-10 tandemly twice between the codons for residues 153 and 154 of the OmpA protein. In pTU T4-22 two fragments were present, in tandem, between the codons for residues 45 and 46 of this protein. In pIN T4-6 one fragment was inserted into the ompA gene immediately following the part encoding the signal sequence. The corresponding mature proteins consist, in this order, of 605, 860, 835, and 279 amino acid residues. All precursor proteins were processed and translocated across the plasma membrane. Hence, not only can the OmpA protein serve as a vehicle for export of a nonsecretory protein, but the signal sequence alone can also mediate export of such a protein. Export of the pro-OmpA protein depends on the SecA protein. Export of the tail fiber fragment expressed from pIN T4-6 remained SecA dependent. Thus, the secA pathway in this case is chosen by the signal peptide. It is proposed that a signal peptide can mediate translocation of nonsecretory proteins as long as they are export-compatible. The inability of a signal sequence to mediate export of some proteins appears to be due to export incompatibility of the protein rather than to the absence of information, within the mature part of the polypeptide, which would be required for translocation.  相似文献   

14.
The tail structures of bacteriophages infecting gram-positive bacteria are largely unexplored, although the phage tail mediates the initial interaction with the host cell. The temperate Lactococcus lactis phage TP901-1 of the Siphoviridae family has a long noncontractile tail with a distal baseplate. In the present study, we investigated the distal tail structures and tail assembly of phage TP901-1 by introducing nonsense mutations into the late transcribed genes dit (orf46), tal(TP901-1) (orf47), bppU (orf48), bppL (orf49), and orf50. Transmission electron microscopy examination of mutant and wild-type TP901-1 phages showed that the baseplate consisted of two different disks and that a central tail fiber is protruding below the baseplate. Evaluation of the mutant tail morphologies with protein profiles and Western blots revealed that the upper and lower baseplate disks consist of the proteins BppU and BppL, respectively. Likewise, Dit and Tal(TP901-1) were shown to be structural tail proteins essential for tail formation, and Tal(TP901-1) was furthermore identified as the tail fiber protein by immunogold labeling experiments. Determination of infection efficiencies of the mutant phages showed that the baseplate is fundamental for host infection and the lower disk protein, BppL, is suggested to interact with the host receptor. In contrast, ORF50 was found to be nonessential for tail assembly and host infection. A model for TP901-1 tail assembly, in which the function of eight specific proteins is considered, is presented.  相似文献   

15.
Coliphages inactivation using chitosan derivatives   总被引:1,自引:0,他引:1  
The effect of chitosan fragments with different degrees of polymerization and the chemical derivatives of chitosan differing in the number of amino groups and total molecule charge on phages T2, T4, and T7 was studied. The interaction of chitosan with bacteriophage particles inactivated them to the extent dependent on the chemical properties of chitosan and its concentration. Phage T2 was found to be most susceptible to inactivation by chitosan. The polycationic nature of chitosan plays an important role in the inactivation of phages. It is assumed that the abnormal rearrangement of the basal plate of phages, the loss of long tail fibers, and probably, modification of the receptor-recognizing phage proteins may be responsible for the inactivation of coliphages by chitosan.  相似文献   

16.
Potato virus A (PVA) particles were bombarded with thermally activated tritium atoms, and the intramolecular distribution of the label in the amino acids of the coat protein was determined to assess their in situ steric accessibility. This method revealed that the N-terminal 15 amino acids of the PVA coat protein and a region comprising amino acids 27 to 50 are the most accessible at the particle surface to labeling with tritium atoms. A model of the spatial arrangement of the PVA coat protein polypeptide chain within the virus particle was derived from the experimental data obtained by tritium bombardment combined with predictions of secondary-structure elements and the principles of packing alpha-helices and beta-structures in proteins. The model predicts three regions of tertiary structure: (i) the surface-exposed N-terminal region, comprising an unstructured N terminus of 8 amino acids and two beta-strands, (ii) a C-terminal region including two alpha-helices, as well as three beta-strands that form a two-layer structure called an abCd unit, and (iii) a central region comprising a bundle of four alpha-helices in a fold similar to that found in tobacco mosaic virus coat protein. This is the first model of the three-dimensional structure of a potyvirus coat protein.  相似文献   

17.
Topology of the products of the genes 34, 35, 36 and 37 of the bacteriophage T4D long tail fibers were determined with the aid of monospecific antibodies. The antibodies against gene product 34 were the only to interact with the proximal part of long tail fibers, but the distal part bound the antibodies against 35, 36 and 37. Product of the gene 35 is located at the joint-site with the distal part and binds the distance not more than 75 A long. Gene product 36 is located between these of 35 and 37 and occupy the region about 150 A. The capability of the antibodies obtained against the above-mentioned proteins were tested ot bind with long tail fibers diagnostic phages DDVIh+ and DDVIh Shigella disentheriae. We could'nt mark any difference in binding of the antibodies against gene 34, 35 and 36 product with DDVI phages and T4D. The distal part of the fibers of DDVIh bound the antibodies against product of gene 37 as T4D. Nevertheless DDVIh+ possesses only few antigenic sites relative to product of gene 37 of T4. The changes in the distal part of long tail fibers of h-strain DDVI may lead to the broadening of the host specifity of this virus.  相似文献   

18.
Several species of δ proteobacteria are capable of reducing insoluble metal oxides as well as other extracellular electron acceptors. These bacteria play a critical role in the cycling of minerals in subsurface environments, sediments, and groundwater. In some species of bacteria such as Geobacter sulfurreducens, the transport of electrons is proposed to be facilitated by filamentous fibers that are referred to as bacterial nanowires. These nanowires are polymeric assemblies of proteins belonging to the type IVa family of pilin proteins and are mainly comprised of one subunit protein, PilA. Here, we report the high resolution solution NMR structure of the PilA protein from G. sulfurreducens determined in detergent micelles. The protein is >85% α-helical and exhibits similar architecture to the N-terminal regions of other non-conductive type IVa pilins. The detergent micelle interacts with the first 21 amino acids of the protein, indicating that this region likely associates with the bacterial inner membrane prior to fiber formation. A model of the G. sulfurreducens pilus fiber is proposed based on docking of this structure into the fiber model of the type IVa pilin from Neisseria gonorrhoeae. This model provides insight into the organization of aromatic amino acids that are important for electrical conduction.  相似文献   

19.
20.
A variety of bacterial pathogenicity determinants, including the type VI secretion system and the virulence cassettes from Photorhabdus and Serratia, share an evolutionary origin with contractile-tailed myophages. The well-characterized Escherichia coli phage P2 provides an excellent system for studies related to these systems, as its protein composition appears to represent the “minimal” myophage tail. In this study, we used nuclear magnetic resonance (NMR) spectroscopy to determine the solution structure of gpX, a 68-residue tail baseplate protein. Although the sequence and structure of gpX are similar to those of LysM domains, which are a large family associated with peptidoglycan binding, we did not detect a peptidoglycan-binding activity for gpX. However, bioinformatic analysis revealed that half of all myophages, including all that possess phage T4-like baseplates, encode a tail protein with a LysM-like domain, emphasizing a widespread role for this domain in baseplate function. While phage P2 gpX comprises only a single LysM domain, many myophages display LysM domain fusions with other tail proteins, such as the DNA circulation protein found in Mu-like phages and gp53 of T4-like phages. Electron microscopy of P2 phage particles with an incorporated gpX-maltose binding protein fusion revealed that gpX is located at the top of the baseplate, near the junction of the baseplate and tail tube. gpW, the orthologue of phage T4 gp25, was also found to localize to this region. A general colocalization of LysM-like domains and gpW homologues in diverse phages is supported by our bioinformatic analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号