首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Exposure of cells to genotoxic agents results in activation of checkpoint pathways leading to cell cycle arrest. These arrest pathways allow repair of damaged DNA before its replication and segregation, thus preventing accumulation of mutations. The tumor suppressor retinoblastoma (RB) is required for the G(1)/S checkpoint function. In addition, regulation of the G(2) checkpoint by the tumor suppressor p53 is RB-dependent. However, the molecular mechanism underlying the involvement of RB and its related proteins p107 and p130 in the G(2) checkpoint is not fully understood. We show here that sustained G(2)/M arrest induced by the genotoxic agent doxorubicin is E2F-dependent and involves a decrease in expression of two mitotic regulators, Stathmin and AIM-1. Abrogation of E2F function by dominant negative E2F abolishes the doxorubicin-induced down-regulation of Stathmin and AIM-1 and leads to premature exit from G(2). Expression of the E7 papilloma virus protein, which dissociates complexes containing E2F and RB family members, also prevents the down-regulation of these mitotic genes and leads to premature exit from G(2) after genotoxic stress. Furthermore, genotoxic stress increases the levels of nuclear E2F-4 and p130 as well as their in vivo binding to the Stathmin promoter. Thus, functional complexes containing E2F and RB family members appear to be essential for repressing expression of critical mitotic regulators and maintaining the G(2)/M checkpoint.  相似文献   

4.
5.
6.
E2F1 pathways to apoptosis   总被引:6,自引:0,他引:6  
Ginsberg D 《FEBS letters》2002,529(1):122-125
  相似文献   

7.
8.
9.
10.
Wang C  Chen L  Hou X  Li Z  Kabra N  Ma Y  Nemoto S  Finkel T  Gu W  Cress WD  Chen J 《Nature cell biology》2006,8(9):1025-1031
  相似文献   

11.
12.
DNA-damage response control of E2F7 and E2F8   总被引:2,自引:0,他引:2  
Here, we report that the two recently identified E2F subunits, E2F7 and E2F8, are induced in cells treated with DNA-damaging agents where they have an important role in dictating the outcome of the DNA-damage response. The DNA-damage-dependent induction coincides with the binding of E2F7 and E2F8 to the promoters of certain E2F-responsive genes, most notably that of the E2F1 gene, in which E2F7 and E2F8 coexist in a DNA-binding complex. As a consequence, E2F7 and E2F8 repress E2F target genes, such as E2F1, and reducing the level of each subunit results in an increase in E2F1 expression and activity. Importantly, depletion of either E2F7 or E2F8 prevents the cell-cycle effects that occur in response to DNA damage. Thus, E2F7 and E2F8 act upstream of E2F1, and influence the ability of cells to undergo a DNA-damage response. E2F7 and E2F8, therefore, underpin the DNA-damage response.  相似文献   

13.
Deregulation of the Rb-E2F pathway occurs in many cancers and results in aberrant cell proliferation as well as an increased propensity to undergo apoptosis. In most cases, apoptosis in response to Rb inactivation involves the activation of p53 but the molecular details of the signaling pathway connecting Rb loss to p53 are poorly understood. Here we demonstrate that the E1A oncoprotein, which binds and inhibits Rb family members, induces the accumulation and phosphorylation of p53 through the DNA damage-responsive ATM kinase. As a result, E1A-induced apoptosis is significantly impaired in cells lacking ATM. In contrast, inactivation of ARF, which is widely believed to activate p53 in response to oncogenic stress, has no effect on p53 induction and only a modest effect on apoptosis in response to E1A. Both E2F1 and E2F3 contribute to ATM-dependent phosphorylation of p53 and apoptosis in cells expressing E1A. However, deregulated E2F3 activity is implicated in the DNA damage caused by E1A while E2F1 stimulates ATM- and NBS1-dependent p53 phosphorylation and apoptosis through a mechanism that does not involve DNA damage.  相似文献   

14.
15.
16.
17.
Recently, using a proteomic approach we have identified the corepressor Alien as a novel interacting factor of the cell cycle regulator E2F1. Unclear was whether this interaction influences cell proliferation and endogenous E2F1 target gene expression. Here, we show by chromatin immunoprecipitation (ChIP) that Alien is recruited in vivo to the E2F binding sites present in the E2F1 gene promoter, inhibits the transactivation of E2F1 and represses endogenous E2F1 gene expression. Interestingly, using synchronized cells to assess the expression of Alien profile during cell cycle the levels of endogenous Alien are increased during G1, G1/S and G2 phase. Furthermore, stable transfection of Alien leads to reduction of cell proliferation. Thus, the data suggest that Alien acts as a corepressor for E2F1 and is involved in cell cycle regulation.  相似文献   

18.
MDM2 expression is down-regulated upon E2F1 over-expression, but the mechanism is not well defined. In the current study, we found that E2F1 inhibits MDM2 expression by suppressing its promoter activity. Although E2F1 binds to the MDM2 promoter, the inhibitory effect of E2F1 on the MDM2 promoter does not require the direct binding. We demonstrate that E2F1 inhibits MDM2 promoter activity in a p53-dependent manner. Knockdown of p53 in U2OS cells impairs the inhibitory effect of E2F1 on the MDM2 promoter. Consistent with this observation, E2F1 does not inhibit MDM2 promoter activity in p53-deficient H1299 cells, and the inhibition is restored when p53 is expressed exogenously. Both E2F1 and p53 are up-regulated after DNA damage stimulation. We show that such stimulation induces E2F1 to inhibit MDM2 promoter activity and promote p53 accumulation. Furthermore, inhibition of MDM2 by E2F1 promotes E2F1 induced apoptosis. These data suggest that E2F1 regulates the MDM2-p53 pathway by inhibiting p53 induced up-regulation of MDM2.  相似文献   

19.
Wong JV  Yao G  Nevins JR  You L 《Molecular cell》2011,41(3):275-285
Highlights? Gene expression noise is an efficient means to probe dose responses ? Variability in MYC reveals biphasic E2f1 dose response ? Modeling predicts serum attenuates E2F repression by MYC ? Biphasic expression underlies discrimination of aberrant levels of growth signaling  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号