首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Computational prediction of side‐chain conformation is an important component of protein structure prediction. Accurate side‐chain prediction is crucial for practical applications of protein structure models that need atomic‐detailed resolution such as protein and ligand design. We evaluated the accuracy of eight side‐chain prediction methods in reproducing the side‐chain conformations of experimentally solved structures deposited to the Protein Data Bank. Prediction accuracy was evaluated for a total of four different structural environments (buried, surface, interface, and membrane‐spanning) in three different protein types (monomeric, multimeric, and membrane). Overall, the highest accuracy was observed for buried residues in monomeric and multimeric proteins. Notably, side‐chains at protein interfaces and membrane‐spanning regions were better predicted than surface residues even though the methods did not all use multimeric and membrane proteins for training. Thus, we conclude that the current methods are as practically useful for modeling protein docking interfaces and membrane‐spanning regions as for modeling monomers. Proteins 2014; 82:1971–1984. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
Chemical shift prediction has an unappreciated power to guide backbone resonance assignment in cases where protein structure is known. Here we describe Resonance Assignment by chemical Shift Prediction (RASP), a method that exploits this power to derive protein backbone resonance assignments from chemical shift predictions. Robust assignments can be obtained from a minimal set of only the most sensitive triple-resonance experiments, even for spectroscopically challenging proteins. Over a test set of 154 proteins RASP assigns 88 % of residues with an accuracy of 99.7 %, using only information available from HNCO and HNCA spectra. Applied to experimental data from a challenging 34 kDa protein, RASP assigns 90 % of manually assigned residues using only 40 % of the experimental data required for the manual assignment. RASP has the potential to significantly accelerate the backbone assignment process for a wide range of proteins for which structural information is available, including those for which conventional assignment strategies are not feasible.  相似文献   

3.
Prediction of protein catalytic residues provides useful information for the studies of protein functions. Most of the existing methods combine both structure and sequence information but heavily rely on sequence conservation from multiple sequence alignments. The contribution of structure information is usually less than that of sequence conservation in existing methods. We found a novel structure feature, residue side chain orientation, which is the first structure-based feature that achieves prediction results comparable to that of evolutionary sequence conservation. We developed a structure-based method, Enzyme Catalytic residue SIde-chain Arrangement (EXIA), which is based on residue side chain orientations and backbone flexibility of protein structure. The prediction that uses EXIA outperforms existing structure-based features. The prediction quality of combing EXIA and sequence conservation exceeds that of the state-of-the-art prediction methods. EXIA is designed to predict catalytic residues from single protein structure without needing sequence or structure alignments. It provides invaluable information when there is no sufficient or reliable homology information for target protein. We found that catalytic residues have very special side chain orientation and designed the EXIA method based on the newly discovered feature. It was also found that EXIA performs well for a dataset of enzymes without any bounded ligand in their crystallographic structures.  相似文献   

4.
In the prediction of protein structure from amino acid sequence, loops are challenging regions for computational methods. Since loops are often located on the protein surface, they can have significant roles in determining protein functions and binding properties. Loop prediction without the aid of a structural template requires extensive conformational sampling and energy minimization, which are computationally difficult. In this article we present a new de novo loop sampling method, the Parallely filtered Energy Targeted All‐atom Loop Sampler (PETALS) to rapidly locate low energy conformations. PETALS explores both backbone and side‐chain positions of the loop region simultaneously according to the energy function selected by the user, and constructs a nonredundant ensemble of low energy loop conformations using filtering criteria. The method is illustrated with the DFIRE potential and DiSGro energy function for loops, and shown to be highly effective at discovering conformations with near‐native (or better) energy. Using the same energy function as the DiSGro algorithm, PETALS samples conformations with both lower RMSDs and lower energies. PETALS is also useful for assessing the accuracy of different energy functions. PETALS runs rapidly, requiring an average time cost of 10 minutes for a length 12 loop on a single 3.2 GHz processor core, comparable to the fastest existing de novo methods for generating an ensemble of conformations. Proteins 2017; 85:1402–1412. © 2017 Wiley Periodicals, Inc.  相似文献   

5.
Normal mode analysis (NMA) methods are widely used to study dynamic aspects of protein structures. Two critical components of NMA methods are coarse-graining in the level of simplification used to represent protein structures and the choice of potential energy functional form. There is a trade-off between speed and accuracy in different choices. In one extreme one finds accurate but slow molecular-dynamics based methods with all-atom representations and detailed atom potentials. On the other extreme, fast elastic network model (ENM) methods with Cα−only representations and simplified potentials that based on geometry alone, thus oblivious to protein sequence. Here we present ENCoM, an Elastic Network Contact Model that employs a potential energy function that includes a pairwise atom-type non-bonded interaction term and thus makes it possible to consider the effect of the specific nature of amino-acids on dynamics within the context of NMA. ENCoM is as fast as existing ENM methods and outperforms such methods in the generation of conformational ensembles. Here we introduce a new application for NMA methods with the use of ENCoM in the prediction of the effect of mutations on protein stability. While existing methods are based on machine learning or enthalpic considerations, the use of ENCoM, based on vibrational normal modes, is based on entropic considerations. This represents a novel area of application for NMA methods and a novel approach for the prediction of the effect of mutations. We compare ENCoM to a large number of methods in terms of accuracy and self-consistency. We show that the accuracy of ENCoM is comparable to that of the best existing methods. We show that existing methods are biased towards the prediction of destabilizing mutations and that ENCoM is less biased at predicting stabilizing mutations.  相似文献   

6.
Reliable computational prediction of protein side chain conformations and the energetic impact of amino acid mutations are the key aspects for the optimization of biotechnologically relevant enzymatic reactions using structure‐based design. By improving the protein stability, higher yields can be achieved. In addition, tuning the substrate selectivity of an enzymatic reaction by directed mutagenesis can lead to higher turnover rates. This work presents a novel approach to predict the conformation of a side chain mutation along with the energetic effect on the protein structure. The HYDE scoring concept applied here describes the molecular interactions primarily by evaluating the effect of dehydration and hydrogen bonding on molecular structures in aqueous solution. Here, we evaluate its capability of side‐chain conformation prediction in classic remutation experiments. Furthermore, we present a new data set for evaluating “cross‐mutations,” a new experiment that resembles real‐world application scenarios more closely. This data set consists of protein pairs with up to five point mutations. Thus, structural changes are attributed to point mutations only. In the cross‐mutation experiment, the original protein structure is mutated with the aim to predict the structure of the side chain as in the paired mutated structure. The comparison of side chain conformation prediction (“remutation”) showed that the performance of HYDEprotein is qualitatively comparable to state‐of‐the art methods. The ability of HYDEprotein to predict the energetic effect of a mutation is evaluated in the third experiment. Herein, the effect on protein stability is predicted correctly in 70% of the evaluated cases. Proteins 2017; 85:1550–1566. © 2017 Wiley Periodicals, Inc.  相似文献   

7.
Side-chain modeling with an optimized scoring function   总被引:1,自引:0,他引:1       下载免费PDF全文
Modeling side-chain conformations on a fixed protein backbone has a wide application in structure prediction and molecular design. Each effort in this field requires decisions about a rotamer set, scoring function, and search strategy. We have developed a new and simple scoring function, which operates on side-chain rotamers and consists of the following energy terms: contact surface, volume overlap, backbone dependency, electrostatic interactions, and desolvation energy. The weights of these energy terms were optimized to achieve the minimal average root mean square (rms) deviation between the lowest energy rotamer and real side-chain conformation on a training set of high-resolution protein structures. In the course of optimization, for every residue, its side chain was replaced by varying rotamers, whereas conformations for all other residues were kept as they appeared in the crystal structure. We obtained prediction accuracy of 90.4% for chi(1), 78.3% for chi(1 + 2), and 1.18 A overall rms deviation. Furthermore, the derived scoring function combined with a Monte Carlo search algorithm was used to place all side chains onto a protein backbone simultaneously. The average prediction accuracy was 87.9% for chi(1), 73.2% for chi(1 + 2), and 1.34 A rms deviation for 30 protein structures. Our approach was compared with available side-chain construction methods and showed improvement over the best among them: 4.4% for chi(1), 4.7% for chi(1 + 2), and 0.21 A for rms deviation. We hypothesize that the scoring function instead of the search strategy is the main obstacle in side-chain modeling. Additionally, we show that a more detailed rotamer library is expected to increase chi(1 + 2) prediction accuracy but may have little effect on chi(1) prediction accuracy.  相似文献   

8.
Intrinsically unstructured proteins (IUPs) are proteins lacking a fixed three dimensional structure or containing long disordered regions. IUPs play an important role in biology and disease. Identifying disordered regions in protein sequences can provide useful information on protein structure and function, and can assist high-throughput protein structure determination. In this paper we present a system for predicting disordered regions in proteins based on decision trees and reduced amino acid composition. Concise rules based on biochemical properties of amino acid side chains are generated for prediction. Coarser information extracted from the composition of amino acids can not only improve the prediction accuracy but also increase the learning efficiency. In cross-validation tests, with four groups of reduced amino acid composition, our system can achieve a recall of 80% at a 13% false positive rate for predicting disordered regions, and the overall accuracy can reach 83.4%. This prediction accuracy is comparable to most, and better than some, existing predictors. Advantages of our approach are high prediction accuracy for long disordered regions and efficiency for large-scale sequence analysis. Our software is freely available for academic use upon request.  相似文献   

9.
NETASA: neural network based prediction of solvent accessibility   总被引:3,自引:0,他引:3  
MOTIVATION: Prediction of the tertiary structure of a protein from its amino acid sequence is one of the most important problems in molecular biology. The successful prediction of solvent accessibility will be very helpful to achieve this goal. In the present work, we have implemented a server, NETASA for predicting solvent accessibility of amino acids using our newly optimized neural network algorithm. Several new features in the neural network architecture and training method have been introduced, and the network learns faster to provide accuracy values, which are comparable or better than other methods of ASA prediction. RESULTS: Prediction in two and three state classification systems with several thresholds are provided. Our prediction method achieved the accuracy level upto 90% for training and 88% for test data sets. Three state prediction results provide a maximum 65% accuracy for training and 63% for the test data. Applicability of neural networks for ASA prediction has been confirmed with a larger data set and wider range of state thresholds. Salient differences between a linear and exponential network for ASA prediction have been analysed. AVAILABILITY: Online predictions are freely available at: http://www.netasa.org. Linux ix86 binaries of the program written for this work may be obtained by email from the corresponding author.  相似文献   

10.
Bayesian segmentation of protein secondary structure.   总被引:12,自引:0,他引:12  
We present a novel method for predicting the secondary structure of a protein from its amino acid sequence. Most existing methods predict each position in turn based on a local window of residues, sliding this window along the length of the sequence. In contrast, we develop a probabilistic model of protein sequence/structure relationships in terms of structural segments, and formulate secondary structure prediction as a general Bayesian inference problem. A distinctive feature of our approach is the ability to develop explicit probabilistic models for alpha-helices, beta-strands, and other classes of secondary structure, incorporating experimentally and empirically observed aspects of protein structure such as helical capping signals, side chain correlations, and segment length distributions. Our model is Markovian in the segments, permitting efficient exact calculation of the posterior probability distribution over all possible segmentations of the sequence using dynamic programming. The optimal segmentation is computed and compared to a predictor based on marginal posterior modes, and the latter is shown to provide significant improvement in predictive accuracy. The marginalization procedure provides exact secondary structure probabilities at each sequence position, which are shown to be reliable estimates of prediction uncertainty. We apply this model to a database of 452 nonhomologous structures, achieving accuracies as high as the best currently available methods. We conclude by discussing an extension of this framework to model nonlocal interactions in protein structures, providing a possible direction for future improvements in secondary structure prediction accuracy.  相似文献   

11.
Template-based methods for predicting protein structure provide models for a significant portion of the protein but often contain insertions or chain ends (InsEnds) of indeterminate conformation. The local structure prediction "problem" entails modeling the InsEnds onto the rest of the protein. A well-known limit involves predicting loops of ≤12 residues in crystal structures. However, InsEnds may contain as many as ~50 amino acids, and the template-based model of the protein itself may be imperfect. To address these challenges, we present a free modeling method for predicting the local structure of loops and large InsEnds in both crystal structures and template-based models. The approach uses single amino acid torsional angle "pivot" moves of the protein backbone with a C(β) level representation. Nevertheless, our accuracy for loops is comparable to existing methods. We also apply a more stringent test, the blind structure prediction and refinement categories of the CASP9 tournament, where we improve the quality of several homology based models by modeling InsEnds as long as 45 amino acids, sizes generally inaccessible to existing loop prediction methods. Our approach ranks as one of the best in the CASP9 refinement category that involves improving template-based models so that they can function as molecular replacement models to solve the phase problem for crystallographic structure determination.  相似文献   

12.
A feed-forward neural network has been employed for protein secondary structure prediction. Attempts were made to improve on previous prediction accuracies using a hierarchical mixture of experts (HME). In this method input data are clustered and used to train a series of different networks. Application of an HME to the prediction of protein secondary structure is shown to provide no advantages over a single network. We have also tried various new input representations, chosen to incorporate the effect of residues a long distance away in the one-dimensional amino acid chain. Prediction accuracy using these methods is comparable to that achieved by other neural networks.1–4  相似文献   

13.
Sun S  Zhao Y  Jiao Y  Yin Y  Cai L  Zhang Y  Lu H  Chen R  Bu D 《FEBS letters》2006,580(7):1891-1896
MOTIVATION: Predicting protein function accurately is an important issue in the post-genomic era. To achieve this goal, several approaches have been proposed deduce the function of unclassified proteins through sequence similarity, co-expression profiles, and other information. Among these methods, the global optimization method (GOM) is an interesting and powerful tool that assigns functions to unclassified proteins based on their positions in a physical interactions network [Vazquez, A., Flammini, A., Maritan, A. and Vespignani, A. (2003) Global protein function prediction from protein-protein interaction networks, Nat. Biotechnol., 21, 697-700]. To boost both the accuracy and speed of GOM, a new prediction method, MFGO (modified and faster global optimization) is presented in this paper, which employs local optimal repetition method to reduce calculation time, and takes account of topological structure information to achieve a more accurate prediction. CONCLUSION: On four proteins interaction datasets, including Vazquez dataset, YP dataset, DIP-core dataset, and SPK dataset, MFGO was tested and compared with the popular MR (majority rule) and GOM methods. Experimental results confirm MFGO's improvement on both speed and accuracy. Especially, MFGO method has a distinctive advantage in accurately predicting functions for proteins with few neighbors. Moreover, the robustness of the approach was validated both in a dataset containing a high percentage of unknown proteins and a disturbed dataset through random insertion and deletion. The analysis shows that a moderate amount of misplaced interactions do not preclude a reliable function assignment.  相似文献   

14.
Nagata K  Randall A  Baldi P 《Proteins》2012,80(1):142-153
Accurate protein side-chain conformation prediction is crucial for protein modeling and existing methods for the task are widely used; however, faster and more accurate methods are still required. Here we present a new machine learning approach to the problem where an energy function for each rotamer in a structure is computed additively over pairs of contacting atoms. A family of 156 neural networks indexed by amino acid and contacting atom types is used to compute these rotamer energies as a function of atomic contact distances. Although direct energy targets are not available for training, the neural networks can still be optimized by converting the energies to probabilities and optimizing these probabilities using Markov Chain Monte Carlo methods. The resulting predictor SIDEpro makes predictions by initially setting the rotamer probabilities for each residue from a backbone-dependent rotamer library, then iteratively updating these probabilities using the trained neural networks. After convergences of the probabilities, the side-chains are set to the highest probability rotamer. Finally, a post processing clash reduction step is applied to the models. SIDEpro represents a significant improvement in speed and a modest, but statistically significant, improvement in accuracy when compared with the state-of-the-art for rapid side-chain prediction method SCWRL4 on the following datasets: (1) 379 protein test set of SCWRL4; (2) 94 proteins from CASP9; (3) a set of seven large protein-only complexes; and (4) a ribosome with and without the RNA. Using the SCWRL4 test set, SIDEpro's accuracy (χ(1) 86.14%, χ(1+2) 74.15%) is slightly better than SCWRL4-FRM (χ(1) 85.43%, χ(1+2) 73.47%) and it is 7.0 times faster. On the same test set SIDEpro is clearly more accurate than SCWRL4-rigid rotamer model (RRM) (χ(1) 84.15%, χ(1+2) 71.24%) and 2.4 times faster. Evaluation on the additional test sets yield similar accuracy results with SIDEpro being slightly more accurate than SCWRL4-flexible rotamer model (FRM) and clearly more accurate than SCWRL4-RRM; however, the gap in CPU time is much more significant when the methods are applied to large protein complexes. SIDEpro is part of the SCRATCH suite of predictors and available from: http://scratch.proteomics.ics.uci.edu/.  相似文献   

15.
MOTIVATION: The Majority Vote approach has demonstrated that protein-protein interactions can be used to predict the structure or function of a protein. In this article we propose a novel method for the prediction of such protein characteristics based on frequencies of pairwise interactions. In addition, we study a second new approach using the pattern frequencies of triplets of proteins, thus for the first time taking network structure explicitly into account. Both these methods are extended to jointly consider multiple organisms and multiple characteristics. RESULTS: Compared to the standard non-network-based method, namely the Majority Vote method, in large networks our predictions tend to be more accurate. For structure prediction, the Frequency-based method reaches up to 71% accuracy, and the Triplet-based method reaches up to 72% accuracy, whereas for function prediction, both the Triplet-based method and the Frequency-based method reach up to 90% accuracy. Function prediction on proteins without homologues showed slightly less but comparable accuracies. Including partially annotated proteins substantially increases the number of proteins for which our methods predict their characteristics with reasonable accuracy. We find that the enhanced Triplet-based method does not currently yield significantly better results than the enhanced Frequency-based method, suggesting that triplets of interactions do not contain substantially more information about protein characteristics than interaction pairs. Our methods offer two main improvements over current approaches--first, multiple protein characteristics are considered simultaneously, and second, data is integrated from multiple species. In addition, the Triplet-based method includes network structure more explicitly than the Majority Vote and the Frequency-based method. AVAILABILITY: The program is available upon request. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

16.
ABSTRACT: BACKGROUND: Searching for structural motifs across known protein structures can be useful for identifying unrelated proteins with similar function and characterising secondary structures such as beta-sheets. This is infeasible using conventional sequence alignment because linear protein sequences do not contain spatial information. beta-residue motifs are beta-sheet substructures that can be represented as graphs and queried using existing graph indexing methods, however, these approaches are designed for general graphs that do not incorporate the inherent structural constraints of beta-sheets and require computationally-expensive filtering and verification procedures. 3D substructure search methods, on the other hand, allow beta-residue motifs to be queried in a three-dimensional context but at significant computational costs. RESULTS: We developed a new method for querying beta-residue motifs, called BetaSearch, which leverages the natural planar constraints of beta-sheets by indexing them as 2D matrices, thus avoiding much of the computational complexities involved with structural and graph querying. BetaSearch demonstrates faster filtering, verification, and overall query time than existing graph indexing approaches whilst producing comparable index sizes. Compared to 3D substructure search methods, BetaSearch achieves 33 and 240 times speedups over index-based and pairwise alignment-based approaches, respectively. Furthermore, we have presented case-studies to demonstrate its capability of motif matching in sequentially dissimilar proteins and described a method for using BetaSearch to predict beta-strand pairing. CONCLUSIONS: We have demonstrated that BetaSearch is a fast method for querying substructure motifs. The improvements in speed over existing approaches make it useful for efficiently performing high-volume exploratory querying of possible protein substructural motifs or conformations. BetaSearch was used to identify a nearly identical beta-residue motif between an entirely synthetic (Top7) and a naturally-occurring protein (Charcot-Leyden crystal protein), as well as identifying structural similarities between biotin-binding domains of avidin, streptavidin and the lipocalin gamma subunit of human C8. AVAILABILITY: The web-interface, source code, and datasets for BetaSearch can be accessed from http://www.csse.unimelb.edu.au/~hohkhkh1/betasearch.  相似文献   

17.
MOTIVATION: Functional annotation of unknown proteins is a major goal in proteomics. A key annotation is the prediction of a protein's subcellular localization. Numerous prediction techniques have been developed, typically focusing on a single underlying biological aspect or predicting a subset of all possible localizations. An important step is taken towards emulating the protein sorting process by capturing and bringing together biologically relevant information, and addressing the clear need to improve prediction accuracy and localization coverage. RESULTS: Here we present a novel SVM-based approach for predicting subcellular localization, which integrates N-terminal targeting sequences, amino acid composition and protein sequence motifs. We show how this approach improves the prediction based on N-terminal targeting sequences, by comparing our method TargetLoc against existing methods. Furthermore, MultiLoc performs considerably better than comparable methods predicting all major eukaryotic subcellular localizations, and shows better or comparable results to methods that are specialized on fewer localizations or for one organism. AVAILABILITY: http://www-bs.informatik.uni-tuebingen.de/Services/MultiLoc/  相似文献   

18.
SUMMARY: Recent advances in high-throughput technology have increased the quantity of available data on protein complexes and stimulated the development of many new prediction methods. In this article, we present ProCope, a Java software suite for the prediction and evaluation of protein complexes from affinity purification experiments which integrates the major methods for calculating interaction scores and predicting protein complexes published over the last years. Methods can be accessed via a graphical user interface, command line tools and a Java API. Using ProCope, existing algorithms can be applied quickly and reproducibly on new experimental results, individual steps of the different algorithms can be combined in new and innovative ways and new methods can be implemented and integrated in the existing prediction framework. AVAILABILITY: Source code and executables are available at http://www.bio.ifi.lmu.de/Complexes/ProCope/.  相似文献   

19.
We present here a neural network-based method for detection of signal peptides (abbreviation used: SP) in proteins. The method is trained on sequences of known signal peptides extracted from the Swiss-Prot protein database and is able to work separately on prokaryotic and eukaryotic proteins. A query protein is dissected into overlapping short sequence fragments, and then each fragment is analyzed with respect to the probability of it being a signal peptide and containing a cleavage site. While the accuracy of the method is comparable to that of other existing prediction tools, it provides a significantly higher speed and portability. The accuracy of cleavage site prediction reaches 73% on heterogeneous source data that contains both prokaryotic and eukaryotic sequences while the accuracy of discrimination between signal peptides and non-signal peptides is above 93% for any source dataset. As a consequence, the method can be easily applied to genome-wide datasets. The software can be downloaded freely from http://rpsp.bioinfo.pl/RPSP.tar.gz.  相似文献   

20.
Methods for rapid and reliable design and structure prediction of linker loops would facilitate a variety of protein engineering applications. Circular permutation, in which the existing termini of a protein are linked by the polypeptide chain and new termini are created, is one such application that has been employed for decreasing proteolytic susceptibility and other functional purposes. The length and sequence of the linker can impact the expression level, solubility, structure and function of the permuted variants. Hence it is desirable to achieve atomic‐level accuracy in linker design. Here, we describe the use of RosettaRemodel for design and structure prediction of circular permutation linkers on a model protein. A crystal structure of one of the permuted variants confirmed the accuracy of the computational prediction, where the all‐atom rmsd of the linker region was 0.89 Å between the model and the crystal structure. This result suggests that RosettaRemodel may be generally useful for the design and structure prediction of protein loop regions for circular permutations or other structure‐function manipulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号