首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Benzylisoquinoline alkaloids (BIAs) are a group of specialized metabolites found predominantly in the plant order Ranunculales. Approximately 2500 naturally occurring BIAs have been identified, many of which possess a variety of potent biological and pharmacological properties. The initial BIA skeleton is formed via condensation by a unique enzyme, norcoclaurine synthase, of the l-tyrosine derivatives dopamine and 4-hydroxyphenylacetaldehyde, yielding (S)-norcoclaurine as a central intermediate. The vast diversity of BIA structures is subsequently derived from (1) transformation of the basic BIA backbone by oxidative enzymes, particularly cytochromes P450 and FAD-linked oxidases, and (2) further structural and functional group modification by tailoring enzymes, which also include various reductases, dioxygenases, acetyltransferases, and carboxylesterases. Most of the biosynthetic enzymes responsible for the biosynthesis of major BIAs (i.e. morphine, noscapine, papaverine, and sanguinarine) in opium poppy (Papaver somniferum), and other compounds (e.g. berberine) in related plants, have been isolated and partially characterized. Diversity in BIA metabolism is driven by the modular and repetitive recruitment, and subsequent neo-functionalization, of a limited number of ancestral enzymes. In this review, BIA biosynthetic enzymes are discussed in the context of their respective families, facilitating exploration of common phylogeny and biochemical mechanisms.  相似文献   

3.
4.
Benzylisoquinoline alkaloids (BIAs) consist of more than 2500 diverse structures largely restricted to the order Ranunculales and the eumagnoliids. However, BIAs also occur in the Rutaceae, Lauraceae, Cornaceae and Nelumbonaceae, and sporadically throughout the order Piperales. Several of these alkaloids function in the defense of plants against herbivores and pathogens--thus the capacity for BIA biosynthesis is expected to play an important role in the reproductive fitness of certain plants. Biochemical and molecular phylogenetic approaches were used to investigate the evolution of BIA biosynthesis in basal angiosperms. The occurrence of (S)-norcoclaurine synthase (NCS; EC 4.2.1.78) activity in 90 diverse plant species was compared to the distribution of BIAs superimposed onto a molecular phylogeny. These results support the monophyletic origin of BIA biosynthesis prior to the emergence of the eudicots. Phylogenetic analysis of NCS, berberine bridge enzyme and several O-methyltransferases suggest a latent molecular fingerprint for BIA biosynthesis in angiosperms not known to accumulate such alkaloids. The limited occurrence of BIAs outside the Ranunculales and eumagnoliids suggests the requirement for a highly specialized, yet evolutionarily unstable cellular platform to accommodate or reactivate the pathway in divergent taxa. The molecular cloning and functional characterization of NCS from opium poppy (Papaver somniferum L.) is also reported. Pathogenesis--related (PR)10 and Bet v 1 major allergen proteins share homology with NCS, but recombinant polypeptides were devoid of NCS activity.  相似文献   

5.
6.
Benzylisoquinoline alkaloids (BIAs) consist of more than 2500 diverse structures largely restricted to the order Ranunculales and the eumagnoliids. However, BIAs also occur in the Rutaceae, Lauraceae, Cornaceae and Nelumbonaceae, and sporadically throughout the order Piperales. Several of these alkaloids function in the defense of plants against herbivores and pathogens - thus, the capacity for BIA biosynthesis is expected to play an important role in the reproductive fitness of certain plants. Biochemical and molecular phylogenetic approaches were used to investigate the evolution of BIA biosynthesis in basal angiosperms. The occurrence of (S)-norcoclaurine synthase (NCS; EC 4.2.1.78) activity in 90 diverse plant species was compared to the distribution of BIAs superimposed onto a molecular phylogeny. These results support the monophyletic origin of BIA biosynthesis prior to the emergence of the eudicots. Phylogenetic analyses of NCS, berberine bridge enzyme and several O-methyltransferases suggest a latent molecular fingerprint for BIA biosynthesis in angiosperms not known to accumulate such alkaloids. The limited occurrence of BIAs outside the Ranunculales and eumagnoliids suggests the requirement for a highly specialized, yet evolutionarily unstable cellular platform to accommodate or reactivate the pathway in divergent taxa. The molecular cloning and functional characterization of NCS from opium poppy (Papaver somniferum L.) is also reported. Pathogenesis-related (PR)10 and Bet v 1 major allergen proteins share homology with NCS, but recombinant polypeptides were devoid of NCS activity.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
Norcoclaurine synthase (NCS) catalyzes the condensation of dopamine and 4-hydroxyphenylacetaldehyde (4-HPAA) to yield norcoclaurine, the common precursor to all benzylisoquinoline alkaloids produced in plants. In opium poppy (Papaver somniferum L.), NCS activity was detected in germinating seeds, young seedlings, and all mature plant organs, especially stems and roots. However, the highest levels of activity were found in cell-suspension cultures treated with a fungal elicitor. NCS activity was induced more than 20-fold over an 80-h period in response to elicitor treatment. Compared to opium poppy. basal NCS activity was 3-and 5-fold higher in benzylisoquinoline alkaloid-producing cell cultures of Eschscholzia californica and Thalictrum flavum ssp. glaucum, respectively. In contrast, NCS activity was not detected in cultured cells of Nicotiana tabacum and Catharanthus roseus, which do not produce benzylisoquinoline alkaloids. NCS displayed maximum activity between pH 6.5 and 7.0, and a broad temperature optimum between 42 and 55 degrees C. Enzyme activity was not affected by Ca2+ or Mg2+, and was not inhibited by a variety of benzylisoquinoline alkaloids. NCS showed hyperbolic saturation kinetics for 4-HPAA, with an apparent Km of 1.0 mM. However, the enzyme exhibited sigmoidal saturation kinetics for dopamine with a Hill coefficient of 1.84. NCS enzymes from E. californica and T. flavum displayed similar properties. These data indicate that NCS exhibits positive cooperativity between substrate-binding sites. Enzymes of this type catalyze regulatory, or rate-limiting, steps in metabolism, suggesting that NCS plays a role in controlling the rate of pathway flux in benzylisoquinoline alkaloid biosynthesis.  相似文献   

16.
Summary Opium poppy (Papaver somniferum L.) contains a number of pharmaceutically important alkaloids of the benzylisoquinoline type including morphine, codeine, papaverine, and sanguinarine. Although these alkaloids accumulate to high concentrations in various organs of the intact plant, only the phytoalexin sanguinarine has been found at significant levels in opium poppy cell cultures. Moreover, even sanguinarine biosynthesis is not constitutive in poppy cell suspension cultures, but is typically induced only after treatment with a funga-derived elicitor. The absence of appreciable quantities of alkaloids in dedifferentiated opium poppy cell cultures suggests that benzylisoquinoline alkaloid biosynthesis is developmentally regulated and requires the differentiation of specific tissues. In the 40 yr since opium poppy tissues were first culturedin vitro, a number of reports on the redifferentiation of roots and buds from callus have appeared. A requirement for the presence of specialized laticifer cells has been suggested before certain alkaloids, such as morphine and codeine, can accumulate. Laticifers represent a complex internal secretory system in about 15 plant families and appear to have multiple evolutionary origins. Opium poppy laticifers differentiate from procambial cells and undergo articulation and anastomosis to form a continuous network of elements associated with the phloem throughout much of the intact plant. Latex is the combined cytoplasm of fused laticifer vessels, and contains numerous large alkaloid vesicles in which latex-associated poppy alkaloids are sequestered. The formation of alkaloid vesicles, the subcellular compartmentation of alkaloid biosynthesis, and the tissue-specific localization and control of these processes are important unresolved problems in plant cell biology. Alkaloid biosynthesis in opium poppy is an excellent model system to investigate the developmental regulation and cell biology of complex metabolic pathways, and the relationship between metabolic regulation and cell-type specific differentiation. In this review, we summarize the literature on the roles of cellular differentiation and plant development in alkaloid biosynthesis in opium poppy plants and tissue cultures.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号