首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Buer CS  Sukumar P  Muday GK 《Plant physiology》2006,140(4):1384-1396
Plant organs change their growth direction in response to reorientation relative to the gravity vector. We explored the role of ethylene in Arabidopsis (Arabidopsis thaliana) root gravitropism. Treatment of wild-type Columbia seedlings with the ethylene precursor 1-aminocyclopropane carboxylic acid (ACC) reduced root elongation and gravitropic curvature. The ethylene-insensitive mutants ein2-5 and etr1-3 had wild-type root gravity responses, but lacked the growth and gravity inhibition by ACC found in the wild type. We examined the effect of ACC on tt4(2YY6) seedlings, which have a null mutation in the gene encoding chalcone synthase, the first enzyme in flavonoid synthesis. The tt4(2YY6) mutant makes no flavonoids, has elevated indole-3-acetic acid transport, and exhibits a delayed gravity response. Roots of tt4(2YY6), the backcrossed line tt4-2, and two other tt4 alleles had wild-type sensitivity to growth inhibition by ACC, whereas the root gravitropic curvature of these tt4 alleles was much less inhibited by ACC than wild-type roots, suggesting that ACC may reduce gravitropic curvature by altering flavonoid synthesis. ACC treatment induced flavonoid accumulation in root tips, as judged by a dye that becomes fluorescent upon binding flavonoids in wild type, but not in ein2-5 and etr1-3. ACC also prevented a transient peak in flavonoid synthesis in response to gravity. Together, these experiments suggest that elevated ethylene levels negatively regulate root gravitropism, using EIN2- and ETR1-dependent pathways, and that ACC inhibition of gravity response occurs through altering flavonoid synthesis.  相似文献   

2.
Yu TS  Lue WL  Wang SM  Chen J 《Plant physiology》2000,123(1):319-326
We isolated pgi1-1, an Arabidopsis mutant with a decreased plastid phospho-glucose (Glc) isomerase activity. While pgi1-1 mutant has a deficiency in leaf starch synthesis, it accumulates starch in root cap cells. It has been shown that a plastid transporter for hexose phosphate transports cytosolic Glc-6-P into plastids and expresses restricted mainly to the heterotrophic tissues. The decreased starch content in leaves of the pgi1-1 mutant indicates that cytosolic Glc-6-P cannot be efficiently transported into chloroplasts to complement the mutant's deficiency in chloroplastic phospho-Glc isomerase activity for starch synthesis. We cloned the Arabidopsis PGI1 gene and showed that it encodes the plastid phospho-Glc isomerase. The pgi1-1 allele was found to have a single nucleotide substitution, causing a Ser to Phe transition. While the flowering times of the Arabidopsis starch-deficient mutants pgi1, pgm1, and adg1 were similar to that of the wild type under long-day conditions, it was significantly delayed under short-day conditions. The pleiotropic phenotype of late flowering conferred by these starch metabolic mutations suggests that carbohydrate metabolism plays an important role in floral initiation.  相似文献   

3.
The temporal and spatial expression of one member of the Arabidopsis 1-aminocyclopropane-1-carboxylate (ACC) synthase gene family (ACS1) was analyzed using a promoter-[beta]-glucuronidase fusion. The expression of ACS1 is under developmental control both in shoot and root. High expression was observed in young tissues and was switched off in mature tissues. ACS1 promoter activity was strongly correlated with lateral root formation. Dark-grown seedlings exhibited a different expression pattern from light-grown ones. The ACC content and the in vivo activity of ACC oxidase were determined. ACC content correlated with ACS1 gene activity. ACC oxidase activity was demonstrated in young Arabidopsis seedlings. Thus, the ACC formed can be converted into ethylene. In addition, ethylene production of immature leaves was fourfold higher compared to that of mature leaves. The possible involvement of ACS1 in influencing plant growth and development is discussed.  相似文献   

4.
5.
6.
The responses of Arabidopsis accessions and characterized genotypes were used to explore components in the early defense responses to the soilborne fungus Verticillium longisporum. V. longisporum susceptibility was found to be a complex trait, in which different disease phenotypes, such as stunting, altered flowering time, weight loss, and chlorosis were perceived differently across genotypes. A Bay-0 x Shahdara recombinant inbred line population was used to identify two loci on chromosomes 2 and 3 of Bay-0 origin that caused enhanced chlorosis after V. longisporum challenge. Furthermore, the observation that a mutation in RFO1 in Col-0 resulted in susceptibility whereas the natural rfo1 allele in Ty-0 showed a high degree of resistance to the pathogen supports the hypothesis that several resistance quantitative trait loci reside among Arabidopsis accessions. Analysis of mutants impaired in known pathogen response pathways revealed an enhanced susceptibility in ein2-1, ein4-1, ein6-1, esa1-1, and pad1-1, but not in other jasmonic acid (JA)-, ethylene (ET)-, or camalexin-deficient mutants, suggesting that V. longisporum resistance is regulated via a hitherto unknown JA- and ET-associated pathway. Pretreatments with the ET precursor 1-aminocyclo-propane-1-carboxylic acid (ACC) or methyl jasmonate (MeJA) caused enhanced resistance to V. longisporum. Mutants in the salicylic acid (SA) pathway (eds1-1, NahG, npr1-3, pad4-1, and sid2-1) did not show enhanced susceptibility to V. longisporum. In contrast, the more severe npr1-1 allele displayed enhanced V. longisporum susceptibility and decreased responses to ACC or MeJA pretreatments. This shows that cytosolic NPR1, in addition to SA responses, is required for JA- and ET-mediated V. longisporum resistance. Expression of the SA-dependent PR-1 and PR-2 and the ET-dependent PR-4 were increased 7 days postinoculation with V. longisporum. This indicates increased levels of SA and ET in response to V. longisporum inoculation. The R-gene signaling mutant ndr1-1 was found to be susceptible to V. longisporum, which could be complemented by ACC or MeJA pretreatments, in contrast to the rfo1 T-DNA mutant, which remained susceptible, suggesting that RFO1 (Fusarium oxysporum resistance) and NDR1 (nonrace specific disease resistance 1) activate two distinct signaling pathways for V. longisporum resistance.  相似文献   

7.
ERN1, a novel ethylene-regulated nuclear protein of Arabidopsis   总被引:2,自引:0,他引:2  
  相似文献   

8.
Lee Y  Kim ES  Choi Y  Hwang I  Staiger CJ  Chung YY  Lee Y 《Plant physiology》2008,147(4):1886-1897
Phosphatidylinositol 3-kinase has been reported to be important for normal plant growth. To characterize the role of the enzyme further, we attempted to isolate Arabidopsis (Arabidopsis thaliana) plants that do not express the gene, but we could not recover homozygous mutant plants. The progeny of VPS34/vps34 heterozygous plants, harboring a T-DNA insertion, showed a segregation ratio of 1:1:0 for wild-type, heterozygous, and homozygous mutant plants, indicating a gametophytic defect. Genetic transmission analysis showed that the abnormal segregation ratio was due to failure to transmit the mutant allele through the male gametophyte. Microscopic observation revealed that 2-fold higher proportions of pollen grains in heterozygous plants than wild-type plants were dead or showed reduced numbers of nuclei. Many mature pollen grains from the heterozygous plants contained large vacuoles even until the mature pollen stage, whereas pollen from wild-type plants contained many small vacuoles beginning from the vacuolated pollen stage, which indicated that vacuoles in many of the heterozygous mutant pollen did not undergo normal fission after the first mitotic division. Taken together, our results suggest that phosphatidylinositol 3-kinase is essential for vacuole reorganization and nuclear division during pollen development.  相似文献   

9.
Acetyl-coenzyme A carboxylase (ACCase) occurs in at least two forms in rapeseed (Brassica napus): a homomeric (HO) and presumably cytosolic isozyme and a heteromeric, plastidial isozyme. We investigated whether the HO-ACCase of Arabidopsis can be targeted to plastids of B. napus seeds. A chloroplast transit peptide and the napin promoter were fused to the Arabidopsis ACC1 gene and transformed into B. napus, with the following results. (a) The small subunit transit peptide was sufficient to provide import of this very large protein into developing seed plastids. (b) HO-ACCase in isolated plastids was found to be biotinylated at a level comparable to extraplastidial HO-ACCase. (c) In vitro assays of HO-ACCase in isolated plastids from developing seeds indicate that it occurs as an enzymatically active form in the plastidial compartment. (d) ACCase activity in mature B. napus seeds is normally very low; however, plants expressing the SSU/ACC1 gene had 10- to 20-fold higher ACCase activity in mature seeds, suggesting that plastid localization prevents the turnover of HO-ACCase. (e) ACCase over-expression altered seed fatty acid composition, with the largest effect being an increase approximately 5% by the expression of HO-ACCase in plastids.  相似文献   

10.
The Arabidopsis Shrunken Seed 1 (SSE1) gene encodes a homolog of the peroxisome biogenesis factor Pex16p, and a loss-of-function mutation in this gene alters seed storage composition. Two lines of evidence support a function for SSE1 in peroxisome biogenesis: the peroxisomal localization of a green fluorescent protein-SSE1 fusion protein and the lack of normal peroxisomes in sse1 mutant embryos. The green fluorescent protein-SSE1 colocalizes with the red fluorescent protein (RFP)-labeled peroxisomal markers RFP-peroxisome targeting signal 1 and peroxisome targeting signal 2-RFP in transgenic Arabidopsis. Each peroxisomal marker exhibits a normal punctate peroxisomal distribution in the wild type but not the sse1 mutant embryos. Further studies reported here were designed toward understanding carbon metabolism in the sse1 mutant. A time course study of dissected embryos revealed a dramatic rate decrease in oil accumulation and an increase in starch accumulation. Introduction of starch synthesis mutations into the sse1 background did not restore oil biosynthesis. This finding demonstrated that reduction in oil content in sse1 is not caused by increased carbon flow to starch. To identify the blocked steps in the sse1 oil deposition pathway, developing sse1 seeds were supplied radiolabeled oil synthesis precursors. The ability of sse1 to incorporate oleic acid, but not pyruvate or acetate, into triacylglycerol indicated a defect in the fatty acid biosynthetic pathway in this mutant. Taken together, the results point to a possible role for peroxisomes in the net synthesis of fatty acids in addition to their established function in lipid catabolism. Other possible interpretations of the results are discussed.  相似文献   

11.
Prior to the cytosolic synthesis of transport sugars during transitory starch utilization, intermediate products of starch breakdown, such as maltose, must be exported from chloroplasts. Recent work in Arabidopsis indicates that a novel transporter mediates maltose transfer across the chloroplast inner envelope membrane. We cloned a gene from an apple cDNA library that is highly homologous with the Arabidopsis maltose transporter, MEX1. Expression levels of MdMEX determined by real-time PCR were low in the tips of growing shoots, higher in expanding leaves and maximal in mature leaves. Expression was also detected in fruits and roots, indicating a role for MdMEX in starch mobilization in sink tissues. The cDNA from apple was subcloned into an expression cassette between the cauliflower mosaic virus 35S promoter and the sGFP (green fluorescent protein) coding sequence. Plants of the Arabidopsis maltose excess1-1 mutant, which is homozygous for a defective MEX1 allele, were transformed with the 35S:MdMEX:GFP construct. Fluorescence of GFP was localized to chloroplasts, indicating that Arabidopsis recognized the predicted 55 amino acid chloroplast transit peptide in the apple protein. The phenotypes of several independently transformed lines were analyzed. The complemented plants were relieved of the severe stunting and chlorosis characteristic of mex1-1 plants. Furthermore, starch levels and concentrations of soluble sugars, leaf chlorophyll content and maximum quantum efficiency of PSII were restored to wild-type levels. MdMEX (Malus domestica maltose transporter) is the second member of the unique maltose transporter gene family.  相似文献   

12.
Acetyl-CoA carboxylase (ACCase) catalyses the carboxylation of acetyl-CoA, forming malonyl-CoA, which is used in the plastid for fatty acid synthesis and in the cytosol in various biosynthetic pathways including fatty acid elongation. In Arabidopsis thaliana, ACC1 and ACC2, two genes located in a tandem repeat within a 25-kbp genomic region near the centromere of chromosome 1, encode two multifunctional ACCase isoforms. Both genes, ACC1 and ACC2, appear to be ubiquitously expressed, but little is known about their respective function and importance. Here, we report the isolation and characterisation of two allelic mutants disrupted in the ACC1 gene. Both acc1-1 and acc1-2 mutations are recessive and embryo lethal. Embryo morphogenesis is impaired and both alleles lead to cucumber-like structures lacking in cotyledons, while the shortened hypocotyl and root exhibit a normal radial pattern organisation of the body axis. In this abnormal embryo, the maturation process still occurs. Storage proteins accumulate normally, while triacylglycerides (TAG) are synthesised at a lower concentration than in the wild-type seed. However, these TAG are totally devoid of very long chain fatty acids (VLCFA) and consequently enriched in C18:1, like all lipid fractions analysed in the mutant seed. These data demonstrate, in planta, the role of ACCase 1 in VLCFA elongation. Furthermore, this multifunctional enzyme also plays an unexpected and central function in embryo morphogenesis, especially in apical meristem development.  相似文献   

13.
A mutant exhibiting conditional male sterility, in which fertility was restored under conditions of high humidity, was identified in T-DNA tagged lines of Arabidopsis thaliana. Scanning electron microscopy (SEM) demonstrated that the pollen surface was almost smooth and the reticulate pattern not prominent. Thus, the mutant was named faceless pollen-1 (flp1). Transmission electron microscopy (TEM) revealed that the smooth appearance was due to tryphine filling in the exine cavities and covering the pollen surface. The lipid droplets in the tryphine of mutant pollen were smaller and more numerous than those of the wild type. SEM analysis also demonstrated that pollen exine was easily damaged by acetolysis, suggesting that a component of exine, sporopollenin, was defective in the mutant. In addition, the stems and siliques had reduced amounts of wax crystals. A predicted amino acid sequence of the cDNA that corresponded to the tagged gene, fip1, showed sequence similarity to proteins involved in wax biosynthesis. The FLP1 protein is likely to play a role in the synthesis of the components of tryphine, sporopollenin of exine and the wax of stems and siliques.  相似文献   

14.
15.
2-methyl-4-amino-5-hydroxymethylpyrimidine phosphate kinase/thiamin monophosphate pyrophosphorylase (HMPPK/TMPPase) is a key enzyme involved in thiamin biosynthesis. A candidate HMPPK/TMPPase gene identified in the Arabidopsis genome complemented the thiamin auxotrophy of the th1 mutant, thus proving that the th1 locus corresponds to the structural gene for the HMPPK/TMPPase. Sequence comparisons between the wild-type HMPPK/TMPPase gene and the th1-201 mutant allele identified a single point mutation that caused the substitution of a phenylalanine for a conserved serine residue in the HMPPK domain. Functional analyses of the mutant HMPPK/TMPPase in Escherichia coli revealed that the amino acid substitution in the HMPPK domain of mutant enzyme resulted in a conformational change that severely compromised both activities of the bifunctional enzyme. Studies were also performed to identify the chloroplast as the specific subcellular locale of the Arabidopsis HMPPK/TMPPase.  相似文献   

16.
? Here, we focused on the biochemical characterization of the Arabidopsis thaliana pectin methylesterase 3 gene (AtPME3; At3g14310) and its role in plant development. ? A combination of biochemical, gene expression, Fourier transform-infrared (FT-IR) microspectroscopy and reverse genetics approaches were used. ? We showed that AtPME3 is ubiquitously expressed in A. thaliana, particularly in vascular tissues. In cell wall-enriched fractions, only the mature part of the protein was identified, suggesting that it is processed before targeting the cell wall. In all the organs tested, PME activity was reduced in the atpme3-1 mutant compared with the wild type. This was related to the disappearance of an activity band corresponding to a pI of 9.6 revealed by a zymogram. Analysis of the cell wall composition showed that the degree of methylesterification (DM) of galacturonic acids was affected in the atpme3-1 mutant. A change in the number of adventitious roots was found in the mutant, which correlated with the expression of the gene in adventitious root primordia. ? Our results enable the characterization of AtPME3 as a major basic PME isoform in A. thaliana and highlight its role in adventitious rooting.  相似文献   

17.
Normal embryo development is required for correct seedling formation. The Arabidopsis gurke and pasticcino3 mutants were isolated from different developmental screens and the corresponding embryos exhibit severe defects in their apical region, affecting bilateral symmetry. We have recently identified lethal acc1 mutants affected in acetyl-CoA carboxylase 1 (ACCase 1) that display a similar embryo phenotype. A series of crosses showed that gk and pas3 are allelic to acc1 mutants, and direct sequencing of the ACC1 gene revealed point mutations in these new alleles. The isolation of leaky acc1 alleles demonstrated that ACCase 1 is essential for correct plant development and that mutations in ACCase affect cellular division in plants, as is the case in yeast. Interestingly, significant metabolic complementation of the mutant phenotype was obtained by exogenous supply of malonate, suggesting that the lack of cytosolic malonyl-CoA is likely to be the initial factor leading to abnormal development in the acc1 mutants.  相似文献   

18.
The biogenesis of transfer RNA is a process that requires many different factors. In this study, we describe a genetic screen aimed to identify gene products participating in this process. By screening for mutations lethal in combination with a sup61-T47:2C allele, coding for a mutant form of, the nonessential TAN1 gene was identified. We show that the TAN1 gene product is required for formation of the modified nucleoside N(4)-acetylcytidine (ac(4)C) in tRNA. In Saccharomyces cerevisiae, ac(4)C is present at position 12 in tRNAs specific for leucine and serine as well as in 18S ribosomal RNA. Analysis of RNA isolated from a tan1-null mutant revealed that ac(4)C was absent in tRNA, but not rRNA. Although no tRNA acetyltransferase activity by a GST-Tan1 fusion protein was detected, a gel-shift assay revealed that Tan1p binds tRNA, suggesting a direct role in synthesis of ac(4)C(12). The absence of the TAN1 gene in the sup61-T47:2C mutant caused a decreased level of mature, indicating that ac(4)C(12) and/or Tan1p is important for tRNA stability.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号