首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A method for detecting and characterizing possible ligands of neuronal GABA(A) receptors has been developed, which is based on measuring the calcium response to GABA by the fluorescence of a two-wavelength Ca-sensitive probe Fura-2. In a young (2–4 days) rat hippocampal cell culture, GABA induced depolarization and a transient increase in Ca2+ concentration in the cytosol of neurons due to activation of voltage-dependent calcium channels. A brief application of GABA could attenuate the calcium response to a subsequent addition of depolarizing agents (GABA or KCl). However, at modest amplitudes of calcium response to GABA, the reduction of the subsequent effect of KCl was insignificant, and the amplitudes of responses to KCl and to GABA proved to be linearly correlated, with a slope of ∼3.4. Therefore, the GABA calcium signals could be normalized in order to compare experiments performed on different days and different cultures. With such normalization, we estimated the EC50 for GABA in neurons at ∼2.23 μM and the Hill coefficient at ∼1.9. A blocker of voltage-dependent calcium channels nifedipine suppressed the calcium responses both to KCl and to GABA, so that the linear relationship between their amplitudes was retained. To further validate the method, the IC50 and the type of inhibition were verified for known noncompetitive and competitive antagonists of GABA(A) receptors.  相似文献   

2.
Effects of temperature on calcium-sensitive fluorescent probes   总被引:5,自引:0,他引:5       下载免费PDF全文
The effect of temperature on the binding equilibria of calcium-sensing dyes has been extensively studied, but there are also important temperature-related changes in the photophysics of the dyes that have been largely ignored. We conducted a systematic study of thermal effects on five calcium-sensing dyes under calcium-saturated and calcium-free conditions. Quin-2, chlortetracycline, calcium green dextran, Indo-1, and Fura-2 all show temperature-dependent effects on fluorescence in all or part of the range tested (5-40 degrees C). Specifically, the intensity of the single-wavelength dyes increased at low temperature. The ratiometric dyes, because of variable effects at the two wavelengths, showed, in general, a reduction in the fluorescence ratio as temperature decreased. Changes in viscosity, pH, oxygen quenching, or fluorescence maxima could not fully explain the effects of temperature on fluorescence. The excited-state lifetimes of the dyes were determined, in both the presence and absence of calcium, using multifrequency phase-modulation fluorimetry. In most cases, low temperature led to prolonged fluorescence lifetimes. The increase in lifetimes at reduced temperature is probably largely responsible for the effects of temperature on the physical properties of the calcium-sensing dyes. Clearly, these temperature effects can influence reported calcium concentrations and must therefore be taken into consideration during any investigation involving variable temperatures.  相似文献   

3.
There is evidence that GABA plays a major role in sleep regulation. GABA(A) receptor agonists and different compounds interacting with the GABA(A) receptor complex, such as barbiturates and benzodiazepines, can interfere with the sleep/wake cycle. On the other hand, there is very little information about the possible role of GABA(B) receptors in sleep modulation. The nucleus basalis of Meynert (NBM), a cholinergic area in the basal forebrain, plays a pivotal role in the modulation of sleep and wakefulness, and both GABA(A) and GABA(B) receptors have been described within the NBM. This study used unilateral infusions in the NBM to determine the effects of 3-hydroxy-5-aminomethylisoxazole hydrobromide (muscimol hydrobromide, a GABA(A) receptor subtype agonist) and beta-(aminomethyl)-4-chlorobenzenepropanoic acid (baclofen, a GABA(B) receptor subtype agonist) on sleep parameters in freely moving rats by means of polygraphic recordings. Muscimol (0.5 nmol) and baclofen (0.7 nmol) induced an increase in slow-wave sleep and an inhibition of wakefulness. Muscimol, but not baclofen, also caused a decrease in desynchronized sleep parameters. The results reported here indicate that 1) the NBM activation of both GABA(A) and GABA(B) receptors influences the sleep/wake cycle, and 2) GABA(A) but not GABA(B) receptors are important for desynchronized sleep modulation, suggesting that the two GABAergic receptors play different roles in sleep modulation.  相似文献   

4.
The classification of neurotransmitter receptors into distinct pharmacological subtypes is of major importance in drug discovery. This quest is particularly important for neurotransmitter systems that are widely distributed. Because gamma-aminobutyric acid (GABA) receptors, both GABA(A) and GABA(B), are found throughout the neuroaxis, they are likely involved in all central nervous system functions. Accordingly, the therapeutic promise of GABA(B) receptor manipulation depends upon the identification of subtypes than can be specifically targeted.  相似文献   

5.
GABA(A) receptors are the major inhibitory transmitter receptors in the central nervous system. They are chloride ion channels that can be opened by gamma-aminobutyric acid (GABA) and are the targets of action of a variety of pharmacologically and clinically important drugs. GABA(A) receptors are composed of five subunits that can belong to different subunit classes. The existence of 19 different subunits gives rise to the formation of a large variety of distinct GABA(A) receptor subtypes in the brain. The majority of GABA(A) receptors seems to be composed of two alpha, two beta and one gamma subunit and the occurrence of a defined subunit stoichiometry and arrangement in alphabetagamma receptors strongly indicates that assembly of GABA(A) receptors proceeds via defined pathways. Based on the differential ability of subunits to interact with each other, a variety of studies have been performed to identify amino acid sequences or residues important for assembly. Such residues might be involved in direct protein-protein interactions, or in stabilizing direct contact sites in other regions of the subunit. Several homo-oligomeric or hetero-oligomeric assembly intermediates could be the starting point of GABA(A) receptor assembly but so far no unequivocal assembly mechanism has been identified. Possible mechanisms of assembly of GABA(A) receptors are discussed in the light of recent publications.  相似文献   

6.
Barnes EM 《Life sciences》2000,66(12):1063-1070
Some of the mechanisms that control the intracellular trafficking of GABA(A) receptors have recently been described. Following the synthesis of alpha, beta, and gamma subunits in the endoplasmic reticulum, ternary receptor complexes assemble slowly and are inefficiently inserted into surface membranes of heterologous cells. While beta3, beta4, and gamma2S subunits appear to contain polypeptide sequences that alone are sufficient for surface targeting, these sequences are neither conserved nor essential for surface expression of heteromeric GABA(A) receptors formed from alpha1beta or alpha1betagamma subunits. At the neuronal surface, native GABA(A) receptor clustering and synaptic targeting require a gamma2 subunit and the participation of gephyrin, a clustering protein for glycine receptors. A linker protein, such as the GABA(A) receptor associated protein (GABARAP), may be necessary for the formation of GABA(A) receptor aggregates containing gephyrin. A substantial fraction of surface receptors are sequestered by endocytosis, another process which apparently requires a GABA(A) receptor gamma2 subunit. In heterologous cells, constitutive endocytosis seems to predominate while, in cortical neurons, internalization is evoked when receptors are occupied by GABA(A) agonists. After constitutive endocytosis, receptors are relatively stable and can be rapidly recycled to the cell surface, a process that may be regulated by protein kinase C. On the other hand, a portion of the intracellular GABA(A) receptors derived from ligand-dependent endocytosis is apparently degraded. The clustering of GABA(A) receptors at synapses and at coated pits are two mechanisms that may compete for a pool of diffusable receptors, providing a model for plasticity at inhibitory synapses.  相似文献   

7.
8.
T E Kute  C Linville  G Barrows 《Cytometry》1983,4(2):132-140
Estrogen receptor (ER) analysis of breast cancer tissue has been shown to be very useful in predicting which patients will respond to hormone therapy and have a better prognosis. The ER assay is, however, tedious and time consuming. Measurement of ER by flow cytometry would be rapid and based on either an average fluorescence-E2 probe intensity per cell or the percentage of the ER+ cells per cell suspension. Analysis of E2 modified structures for relative binding affinity to the ER determined by competition studies and for fluorescence uptake into cell suspensions determined by flow cytometry was performed. Lack of high affinity to the ER and purity of the compound were major problems for the fluorescein-labeled estrogen probes. Base hydrolysis of the ester linkage in fluorescein-E2 compounds demonstrated by HPLC very little estradiol derivative in the parent compounds compared to total components present. A second type of fluoresceinated estrogen which has a peptide bond between the steroid and the chromophore was also tested. It was less contaminated but was unable to get into the cell and showed no binding activity to the ER. A pure plant fluorescent estrogen, coumestrol, has Ka of 6 X 10(8) M-1 for the ER and is a single component as determined by HPLC. Specific fluorescent uptake of coumestrol was performed on ER+ and ER- viable cell suspensions. When these coumestrol-cell suspensions were excited at 350-360 nm and the blue emission was measured using flow cytometry, the result was a fluorescence uptake that was not highly displaceable by excess nonfluorescence E2 probes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Instrumentation for rare-event analysis should be capable of reliably detecting infrequent cells (less than 1:10,000) while both excluding false-positive signals and including true positive cells found in multicell clumps. We have developed a digital image microscopy (DIM) system in which a cytospin of 2 million cells is scanned with an intensified video camera (ISIT) using an IBM PC AT microcomputer-controlled microscope stage. PASCAL software controls the stage and analyzes video input, storing the location of positive cells to magnetic disk. The user can then "replay" each positive cell under computer control for either visual confirmation or analysis using other fluorescent probes. The computer requires 24 min to scan a cytoprep of 2 million cells, while playback for visual confirmation by the user averages 5 min. Using Hoechst-33342 premarked cells seeded into bone marrow as a model system, we found that the DIM system reliably detects one target cell per million marrow cells. With appropriate immunological markers, this system will aid in evaluating bone marrow purged of tumor cells prior to transplantation and should also be useful for detection of minimal residual disease in blood or bone marrow from patients with leukemia or solid tumors.  相似文献   

10.
New fluorescent ligands for adenosine receptors (ARs), obtained by the insertion, in the N(6) position of NECA, of NBD-moieties with linear alkyl spacers of increasing length, proved to possess a high affinity and selectivity for the A(3) subtype expressed in CHO cells. In fluorescence microscopy assays, compound 2d, the most active and selective for human A(3)-AR, permitted visualization and localization of this human receptor subtype, showing its potential suitability for internalization and trafficking studies in living cells.  相似文献   

11.
GABARAP (GABA(A) receptor-associated protein) interacts with both microtubules and GABA(A) receptors in vitro and in vivo and is capable of modulating receptor channel kinetics. In this study, we use the intracellular loop of 15 GABA(A) receptor subunits to show that the interaction between GABARAP and GABA(A) receptor is specific for the gamma subunits. Pharmacological characterization of proteins purified by GABARAP affinity column indicates that native GABA(A) receptors interact with GABARAP. Quantitative yeast two-hybrid assays were used to identify the interaction domain in the gamma2 subunit for GABARAP binding, and to identify the interaction domain in GABARAP for GABA(A) receptor binding. A peptide corresponding to the GABARAP interaction domain in the gamma2 subunit was used to inhibit the interaction between GABARAP and the gamma2 subunit. In addition, the ability of GABARAP to promote cluster formation of recombinant receptors expressed in QT-6 fibroblasts was inhibited by a membrane-permeable form of this peptide in a time-dependent manner. The establishment of a model for GABARAP-induced clustering of GABA(A) receptors in living cells and the identification of subunit specificity and interaction domains in the interaction between GABARAP and GABA(A) receptors is a step in dissecting the function of GABARAP in GABA(A) receptor clustering and/or targeting.  相似文献   

12.
13.
Intracellular production of reactive oxygen species (ROS) plays an important role in the control of cell physiology. For the assessment of intracellular ROS production, a plethora of fluorescent probes is commonly used. Interestingly, chemical structures of these probes imply they could be substrates of plasma membrane efflux pumps, called ABC transporters. This study tested whether the determination of intracellular ROS production and mitochondrial membrane potential by selected fluorescent probes is modulated by the expression and activity of ABC transporters. The sub-clones of the HL-60 cell line over-expressing MDR1, MRP1 and BCRP transporters were employed. ROS production measured by luminol- and L-012-enhaced chemiluminescence and cytochrome c reduction assay showed similar levels of ROS production in all the employed cell lines. It was proved that dihydrorhodamine 123, dihexiloxocarbocyanine iodide, hydroethidine, tetrachloro-tetraethylbenzimidazolocarbo-cyanine iodide and tetramethylrhodamine ethyl ester perchlorate are substrates for MDR1; dichlorodihydrofluoresceine, hydroethidine and tetramethylrhodamine ethyl ester perchlorate are substrates for MRP1; dichlorodihydrofluoresceine, dihydrorhodamine 123, hydroethidine and tetrachloro-tetraethylbenzimidazolocarbo-cyanine iodide are substrates for BCRP. Thus, the determination of intracellular ROS and mitochondrial potential by the selected probes is significantly altered by ABC transporter activities. The activity of these transporters must be considered when employing fluorescent probes for the assessment of ROS production or mitochondrial membrane potential.  相似文献   

14.
Phosphorylation can affect both the function and trafficking of GABA(A) receptors with significant consequences for neuronal excitability. Serine/threonine kinases can phosphorylate the intracellular loops between M3-4 of GABA(A) receptor beta and gamma subunits thereby modulating receptor function in heterologous expression systems and in neurons (1, 2). Specifically, CaMK-II has been demonstrated to phosphorylate the M3-4 loop of GABA(A) receptor subunits expressed as GST fusion proteins (3, 4). It also increases the amplitude of GABA(A) receptor-mediated currents in a number of neuronal cell types (5-7). To identify which substrate sites CaMK-II might phosphorylate and the consequent functional effects, we expressed recombinant GABA(A) receptors in NG108-15 cells, which have previously been shown to support CaMK-II modulation of GABA(A) receptors containing the beta3 subunit (8). We now demonstrate that CaMK-II mediates its effects on alpha1beta3 receptors via phosphorylation of Ser(383) within the M3-4 domain of the beta subunit. Ablation of beta3 subunit phosphorylation sites for CaMK-II revealed that for alphabetagamma receptors, CaMK-II has a residual effect on GABA currents that is not mediated by previously identified sites of CaMK-II phosphorylation. This residual effect is abolished by mutation of tyrosine phosphorylation sites, Tyr(365) and Tyr(367), on the gamma2S subunit, and by the tyrosine kinase inhibitor genistein. These results suggested that CaMK-II is capable of directly phosphorylating GABA(A) receptors and activating endogenous tyrosine kinases to phosphorylate the gamma2 subunit in NG108-15 cells. These findings were confirmed in a neuronal environment by expressing recombinant GABA(A) receptors in cerebellar granule neurons.  相似文献   

15.
Two new probes for the detection of calpain I activity based on fluorescence resonance energy transfer technology have been synthesized and evaluated. The probes incorporated the cleavage site present in alpha-spectrin, a naturally occurring substrate of calpain I. The design of the internally quenched substrates is such that the calpain-sensitive bond of the peptides (between the Tyr-Gly residues) is located centrally between the donor and the quencher chromophores. The calpain assay protocol is capable of detecting enzymatic activity in the nanomolar region.  相似文献   

16.
In this article we present a comprehensive review of relevant research and reports on the GABAA receptor in the aged and Alzheimer's disease (AD) brain. In comparison to glutamatergic and cholinergic systems, the GABAergic system is relatively spared in AD, but the precise mechanisms underlying differential vulnerability are not well understood. Using several methods, investigations demonstrate that despite resistance of the GABAergic system to neurodegeneration, particular subunits of the GABAA receptor are altered with age and AD, which can induce compensatory increases in GABAA receptor subunits within surrounding cells. We conclude that although aging- and disease-related changes in GABAA receptor subunits may be modest, the mechanisms that compensate for these changes may alter the pharmacokinetic and physiological properties of the receptor. It is therefore crucial to understand the subunit composition of individual GABAA receptors in the diseased brain when developing therapeutics that act at these receptors.  相似文献   

17.
18.
非洲爪蟾卵母细胞GABAB和GABAc受体介导的电流反应   总被引:4,自引:0,他引:4  
Yang Q  Li ZW  Wei JB 《生理学报》2001,53(4):311-315
实验应用双电极电压箝技术,在具有滤泡膜的非洲爪蟾(Xenopuslaevis)卵母细胞上记录到γ-氨基丁酸(γ-aminobutyricacid,GABA)-激活电流。此GABA-激活电流的特点及有关GABA受体类型的研究和分析如下(1)在35.5%(55/155)的受检细胞外加GABA可引起一慢的浓度依赖性的外向电流。(2)GABAA受体的选择性拮抗剂bicuculline(10  相似文献   

19.
Structure and subunit composition of GABA(A) receptors.   总被引:4,自引:0,他引:4  
GABA(A) receptors are the major inhibitory neurotransmitter receptors in the brain and are the site of action of many clinically important drugs. These receptors are composed of five subunits that can belong to eight different subunit classes. If all GABA(A) receptor subunits could randomly combine with each other, an extremely large number of GABA(A) receptor subtypes with distinct subunit composition and arrangement would be formed. Depending on their subunit composition, these receptors would exhibit distinct pharmacological and electrophysiological properties. Recent evidence, however, indicates that not all subunits can assemble efficiently with each other and form functional homo- or hetero-oligomeric receptors. In addition, the efficiency of formation of hetero-oligomeric assembly intermediates determines the subunit stoichiometry and subunit arrangement for each receptor and thus further reduces the possible heterogeneity of GABA(A) receptors in the brain. Studies investigating the subunit composition of native GABA(A) receptors support this conclusion, but also indicate that receptors composed of one, two, three, four, or five different subunits might exist in the brain. Using a recently established immunodepletion technique, the subunit composition and quantitative importance of native GABA(A) receptor subtypes can be determined. This information, together with studies on the regional, cellular and subcellular distribution of these receptor subtypes, will be the basis for a rational development of drugs that specifically affect the GABAergic system.  相似文献   

20.
The 5-HT(3) and GABA(A) receptors are members of the Cys-loop family of neurotransmitter-gated ion channels that also include receptors for glycine and acetylcholine. The 5-HT(3) and acetylcholine receptors (cationic ion channels) and the GABA(A) and glycine receptors (anionic ion channels) generally depolarize or hyperpolarize, respectively, the neuronal membrane. Within the amino-terminal extracellular region, all members of this family exhibit a similar architecture of ligand binding domains and a number of key residues are completely conserved. The molecular characterization of their ligand binding and gating characteristics has benefited from the existence of a large repertoire of individual subunits that contribute to the pentameric ion channel. Although differences do exist, advances in our knowledge of one member offers valuable insight into the family as a whole. Each member of the Cys-loop receptors (and all other multimeric ion channels) must face the same challenges: How to assemble individual subunits into an ion channel and which subunits to use? How are assembled receptors distinguished from those that are unassembled or misassembled, then exported from the endoplasmic reticulum and delivered to the cell surface? How are they targeted to, and anchored at synaptic and extrasynaptic sites? How and when are they to be removed from these sites to provide long-term regulation of neuronal activity? In this review, we summarize our current knowledge for the 5-HT(3) and GABA(A) receptors that have provided complementary information and helped us build an overall picture of how receptor biogenesis and trafficking occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号