首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Cellular signaling via epidermal growth factor (EGF) and EGF-like ligands can determine cell fate and behavior. Osteoblasts, which are responsible for forming and mineralizing osteoid, express EGF receptors and alter rates of proliferation and differentiation in response to EGF receptor activation. Transgenic mice over-expressing the EGF-like ligand betacellulin (BTC) exhibit increased cortical bone deposition; however, because the transgene is ubiquitously expressed in these mice, the identity of cells affected by BTC and responsible for increased cortical bone thickness remains unknown. We have therefore examined the influence of BTC upon mesenchymal stem cell (MSC) and pre-osteoblast differentiation and proliferation. BTC decreases the expression of osteogenic markers in both MSCs and pre-osteoblasts; interestingly, increases in proliferation require hypoxia-inducible factor-alpha (HIF-α), as an HIF antagonist prevents BTC-driven proliferation. Both MSCs and pre-osteoblasts express EGF receptors ErbB1, ErbB2, and ErbB3, with no change in expression under osteogenic differentiation. These are the first data that demonstrate an influence of BTC upon MSCs and the first to implicate HIF-α in BTC-mediated proliferation.  相似文献   

3.
Lymphatic vasculature plays a crucial role in the maintenance of tissue interstitial fluid balance. The role of functional collecting lymphatic vessels in lymph transport has been recently highlighted in pathologies leading to lymphedema, for which treatments are currently unavailable. Intraluminal valves are of paramount importance in this process. However, valve formation and maturation have not been entirely elucidated yet, in particular, the role played by the extracellular matrix (ECM). We hypothesized that EMILIN1, an ECM multidomain glycoprotein, regulates lymphatic valve formation and maintenance. Using a mouse knockout model, we show that in the absence of EMILIN1, mice exhibit defects in lymphatic valve structure and in lymph flow. By applying morphometric in vitro and in vivo functional assays, we conclude that this impaired phenotype depends on the lack of α9β1 integrin engagement, the specific lymphatic endothelial cell receptor for EMILIN1, and the ensuing derangement of cell proliferation and migration. Our data demonstrate a fundamental role for EMILIN1-integrin α9 interaction in lymphatic vasculature, especially in lymphatic valve formation and maintenance, and underline the importance of this ECM component in displaying a regulatory function in proliferation and acting as a “guiding” molecule in migration of lymphatic endothelial cells.  相似文献   

4.
5.
A series of potent α4β1/α4β7 integrin inhibitors is reported, including an inhibitor 12d with remarkable oral exposure and efficacy in rat models of rheumatoid arthritis and Crohn’s disease.  相似文献   

6.
BackgroundThe large extracellular matrix protein SVEP1 mediates cell adhesion via integrin α9β1. Recent studies have identified an association between a missense variant in SVEP1 and increased risk of coronary artery disease (CAD) in humans and in mice Svep1 deficiency alters the development of atherosclerotic plaques. However how SVEP1 functionally contributes to CAD pathogenesis is not fully understood. Monocyte recruitment and differentiation to macrophages is a key step in the development of atherosclerosis. Here, we investigated the requirement for SVEP1 in this process.MethodsSVEP1 expression was measured during monocyte–macrophage differentiation in primary monocytes and THP-1 human monocytic cells. SVEP1 knockout THP-1 cell lines and the dual integrin α4β1/α9β1 inhibitor, BOP, were utilised to investigate the effect of these proteins in THP-1 cell adhesion, migration and cell spreading assays. Subsequent activation of downstream integrin signalling intermediaries was quantified by western blotting.ResultsSVEP1 gene expression increases in monocyte to macrophage differentiation in human primary monocytes and THP-1 cells. Using two SVEP1 knockout THP-1 cells we observed reduction in monocyte adhesion, migration, and cell spreading compared to control cells. Similar results were found with integrin α4β1/α9β1 inhibition. We demonstrate reduced activity of Rho and Rac1 in SVEP1 knockout THP-1 cells.ConclusionsSVEP1 regulates monocyte recruitment and differentiation phenotypes through an integrin α4β1/α9β1 dependent mechanism.General significanceThese results describe a novel role for SVEP1 in monocyte behaviour relevant to CAD pathophysiology.  相似文献   

7.

Background

CCN2, (a.k.a. connective tissue growth factor and CTGF) has emerged as a regulator of cell migration. While the importance of CCN2 for the fibrotic process in wound healing has been well studied, the effect of CCN2 on keratinocyte function is not well understood. In this study, we investigated the mechanism behind CCN2-driven keratinocyte adhesion and migration.Materials and methods: Adhesion assays were performed by coating wells with 10 μg/ml fibronectin (FN) or phosphate-buffered saline (PBS). Keratinocytes were seeded in the presence or absence of 200 ng/ml CCN2, 5 mmol/l ethylenediaminetetraacetic acid, 10 mmol/l cations, 500 μl arginine–glycine–aspartic acid (RGD), 500 μM arginine–glycine–glutamate–serine (RGES), and 10 μg/ml anti-integrin blocking antibodies. Migration studies were performed using a modified Boyden chamber assay. Quantitative PCR was used to study the effect of CCN2 on integrin subunit mRNA expression. To block intracellular pathways, keratinocytes were pretreated with 20 μM PD98059 (MEK-1 inhibitor) or 20 μM PF573228 (FAK inhibitor) for 60 min prior the addition of CCN2. Western blot was used to measure CCN2, p-ERK1/2, and ERK1/2.Results: CCN2 enhanced keratinocyte adhesion to fibronectin via integrin α5β1. The addition of anti-integrin α5β1 antibodies reduced CCN2-mediated keratinocyte migration. In addition, CCN2 regulated mRNA and protein expression of integrin subunits α5 and β1. CCN2 activated the FAK-MAPK signaling pathway, and pretreatment with MEK1-specific inhibitor PD98059 markedly reduced CCN2-induced keratinocyte migration.Conclusions: Our results demonstrate that CCN2 enhances keratinocyte adhesion and migration through integrin α5β1 and activation of the FAK-MAPK signaling cascade.  相似文献   

8.
Zhang  Kun  Tian  Ruoxi  Zhang  Wancong  Li  Yishuai  Zeng  Ning  Liang  Yan  Tang  Shijie 《Molecular biology reports》2022,49(9):8241-8250
Molecular Biology Reports - The glycolytic enzyme, α-Enolase (ENO1), catalyzes the production of phosphoenolpyruvate from 2-phosphoglycerate, thereby enhancing glycolysis and contributing to...  相似文献   

9.
Accumulation of unfolded proteins within the endoplasmic reticulum (ER) lumen induces ER stress. Eukaryotic cells possess the ER quality control systems, the unfolded protein response (UPR), to adapt to ER stress. IRE1α is one of the ER stress receptors and mediates the UPR. Here, we identified ubiquitin specific protease (USP) 14 as a binding partner of IRE1α. USP14 interacted with the cytoplasmic region of IRE1α, and the endogenous interaction between USP14 and IRE1α was inhibited by ER stress. Overexpression of USP14 inhibited the ER-associated degradation (ERAD) pathway, and USP14 depletion by small interfering RNA effectively activated ERAD. These findings suggest that USP14 is a novel player in the UPR by serving as a physiological inhibitor of ERAD under the non-stressed condition.  相似文献   

10.
11.
12.
Integrins are widely expressed cell surface molecules that mediate cell attachment to extracellular matrix (ECM) proteins. They also interact with molecules on their own membranes, and these cis-interactions play a crucial role in integrin-dependent cellular responses. We herein analysed what molecules interact with β1 integrin during biological events induced by cell attachment to different ECM proteins, using a recently established reaction, the enzyme-mediated activation of radical sources (EMARS). The interactions between β1 integrin and receptor tyrosine kinases including EGFR and ErbB4 reached a peak at 2 h after seeding HeLa S3 cells onto the ECM proteins. The peak of phosphorylation of ErbB4 (at 2 h after seeding the cells onto fibronectin) coincided with the peak of the interaction with β1 integrin, while that of EGFR (at 1 day) did not. Accompanying with these findings, suppression of cell migration by a pharmacological inhibitor of the ErbB family receptors, PD168393 and an anti-ErbB4 neutralizing antibody, 12D8 was observed at 2 h after seeding. Taken together, it is deduced that interactions between β1 integrin and ErbB4 occur in a spatiotemporally-regulated manner, and such interaction contributes to the integrin-dependent cell migration.  相似文献   

13.
Prompt deposition of fibronectin-rich extracellular matrix is a critical feature of normal development and the host-response to injury. Fibronectin isoforms that include the EDA and EDB domains are prominent in these fibronectin matrices. We now report using human dermal fibroblast cultures that the EDA domain of fibronectin or EDA-derived peptides modeled after the C–C′ loop promote stress fiber formation and myosin-light chain phosphorylation. These changes are accompanied by an increase in fibronectin synthesis and fibrillogenesis. These effects are blocked by pretreating cells with either siRNA or blocking antibody to the α4 integrin. Our data indicate that the interaction between the α4β1 integrin and the EDA domain of fibronectin helps to drive tissue fibrosis by promoting a contractile phenotype and an increase in fibronectin synthesis and deposition.  相似文献   

14.
15.
16.
Anaphase-promoting complex (APC) and its co-activator Cdh1 are required for cell cycle regulation in proliferating cells. Recent studies have defined diverse functions of APC–Cdh1 in nervous system development and injury. Our previous studies have demonstrated the activity of APC–Cdh1 is down-regulated in hippocampus after global cerebral ischemia. But the detailed mechanisms of APC–Cdh1 in ischemic nervous injury are unclear. It is known that astrocyte proliferation is an important pathophysiological process following cerebral ischemia. However, the role of APC–Cdh1 in reactive astrocyte proliferation is not determined yet. In the present study, we cultured primary cerebral astrocytes and set up in vitro oxygen–glucose deprivation and reperfusion model. Our results showed that the expression of Cdh1 was decreased while Skp2 (the downstream substrate of APC–Cdh1) was increased in astrocytes after 1 h oxygen–glucose deprivation and reperfusion. The down-regulation of APC–Cdh1 was coupled with reactive astrocyte proliferation. By constructing Cdh1 expressing lentivirus system, we also found exogenous Cdh1 can down-regulate Skp2 and inhibit reactive astrocyte proliferation induced by oxygen–glucose deprivation and reperfusion. Moreover, Western blot showed that other downstream proteins of APC–Cdh1, PFK-1 and SnoN, were decreased in the inhibition of reactive astrocyte proliferation with Cdh1 expressing lentivirus treatment. These results suggest that Cdh1 plays an important role in the regulation of reactive astrocyte proliferation induced by oxygen–glucose deprivation and reperfusion.  相似文献   

17.
Quercetin, a flavonoid with anti-oxidant, metal chelating, kinase modulating and anti-proliferative properties, can induce hypoxia-inducible factor-1α (HIF-1α) in normoxia, but its mechanism of action has not been determined. In this study we characterized the induction of HIF-1α and the inhibition of cell proliferation caused by quercetin in HeLa and ASM (airway smooth muscle) cells and examined the effect of iron on these processes. Furthermore, we investigated the relevance of the intracellular levels of quercetin to HIF-1α expression and cell proliferation. Our data demonstrate that quercetin depletes intracellular calcein–chelatable iron and that supplying additional iron from extracellular or intracellular pools abrogates the induction of HIF-1α by quercetin. Moreover, addition of iron reverses the quercetin-induced inhibition of DNA synthesis, cell proliferation and cycle progression, but to different extents, depending on cell type. We propose that quercetin stabilises HIF-1α and inhibits cell proliferation predominantly by decreasing the concentration of intracellular iron through chelation.  相似文献   

18.
Wan  Wei-feng  Zhang  Xin  Huang  Chang-ren  Chen  Li-gang  Yang  Xiao-bo  Bao  Kun-yang  Peng  Tang-ming 《Molecular biology reports》2021,48(5):4137-4151
Molecular Biology Reports - The purpose of this study was to explore the effect of miR-34c on PDGF-BB-induced HAVSMCs phenotypic transformation and proliferation via PDGFR-β/SIRT1 pathway, so...  相似文献   

19.
20.
The extracellular matrix microenvironment regulates cell phenotype and function. One mechanism by which this is achieved is the transactivation of receptor tyrosine kinases by specific matrix molecules. Here, we demonstrate that the provisional matrix protein, fibronectin (FN), activates fibroblast growth factor (FGF) receptor-1 (FGFR1) independent of FGF ligand in liver endothelial cells. FN activation of FGFR1 requires β1 integrin, as evidenced by neutralizing antibody and siRNA-based studies. Complementary genetic and pharmacologic approaches identify that the non-receptor tyrosine kinase Src is required for FN transactivation of FGFR1. Whereas FGF ligand-induced phosphorylation of FGFR1 preferentially activates ERK, FN-induced phosphorylation of FGFR1 preferentially activates AKT, indicating differential downstream signaling of FGFR1 in response to alternate stimuli. Mutation analysis of known tyrosine residues of FGFR1 reveals that tyrosine 653/654 and 766 residues are required for FN-FGFR1 activation of AKT and chemotaxis. Thus, our study mechanistically dissects a new signaling pathway by which FN achieves endothelial cell chemotaxis, demonstrates how differential phosphorylation profiles of FGFR1 can achieve alternate downstream signals, and, more broadly, highlights the diversity of mechanisms by which the extracellular matrix microenvironment regulates cell behavior through transactivation of receptor tyrosine kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号