共查询到20条相似文献,搜索用时 0 毫秒
1.
MetaCyc (http://metacyc.org) contains experimentally determined biochemical pathways to be used as a reference database for metabolism. In conjunction with the Pathway Tools software, MetaCyc can be used to computationally predict the metabolic pathway complement of an annotated genome. To increase the breadth of pathways and enzymes, more than 60 plant-specific pathways have been added or updated in MetaCyc recently. In contrast to MetaCyc, which contains metabolic data for a wide range of organisms, AraCyc is a species-specific database containing only enzymes and pathways found in the model plant Arabidopsis (Arabidopsis thaliana). AraCyc (http://arabidopsis.org/tools/aracyc/) was the first computationally predicted plant metabolism database derived from MetaCyc. Since its initial computational build, AraCyc has been under continued curation to enhance data quality and to increase breadth of pathway coverage. Twenty-eight pathways have been manually curated from the literature recently. Pathway predictions in AraCyc have also been recently updated with the latest functional annotations of Arabidopsis genes that use controlled vocabulary and literature evidence. AraCyc currently features 1,418 unique genes mapped onto 204 pathways with 1,156 literature citations. The Omics Viewer, a user data visualization and analysis tool, allows a list of genes, enzymes, or metabolites with experimental values to be painted on a diagram of the full pathway map of AraCyc. Other recent enhancements to both MetaCyc and AraCyc include implementation of an evidence ontology, which has been used to provide information on data quality, expansion of the secondary metabolism node of the pathway ontology to accommodate curation of secondary metabolic pathways, and enhancement of the cellular component ontology for storing and displaying enzyme and pathway locations within subcellular compartments. 相似文献
2.
UK CropNet: a collection of databases and bioinformatics resources for crop plant genomics 总被引:4,自引:0,他引:4 下载免费PDF全文
Dicks J Anderson M Cardle L Cartinhour S Couchman M Davenport G Dickson J Gale M Marshall D May S McWilliam H O'Malia A Ougham H Trick M Walsh S Waugh R 《Nucleic acids research》2000,28(1):104-107
The UK Crop Plant Bioinformatics Network (UK CropNet) was established in 1996 in order to harness the extensive work in genome mapping in crop plants in the UK. Since this date we have published five databases from our central UK CropNet WWW site (http://synteny.nott.ac.uk/) with a further three to follow shortly. Our resource facilitates the identification and manipulation of agronomically important genes by laying a foundation for comparative analysis among crop plants and model species. In addition, we have developed a number of software tools that facilitate the visualisation and analysis of our data. Many of our tools are made freely available for use with both crop plant data and with data from other species. 相似文献
3.
4.
5.
Enormous amounts of data result from genome sequencing projects and new experimental methods. Within this tremendous amount of genomic data 30-40 per cent of the genes being identified in an organism remain unknown in terms of their biological function. As a consequence of this lack of information the overall schema of all the biological functions occurring in a specific organism cannot be properly represented. To understand the functional properties of the genomic data more experimental data must be collected. A pathway database is an effort to handle the current knowledge of biochemical pathways and in addition can be used for interpretation of sequence data. Some of the existing pathway databases can be interpreted as detailed functional annotations of genomes because they are tightly integrated with genomic information. However, experimental data are often lacking in these databases. This paper summarises a list of pathway databases and some of their corresponding biological databases, and also focuses on information about the content and the structure of these databases, the organisation of the data and the reliability of stored information from a biological point of view. Moreover, information about the representation of the pathway data and tools to work with the data are given. Advantages and disadvantages of the analysed databases are pointed out, and an overview to biological scientists on how to use these pathway databases is given. 相似文献
6.
7.
Bioinformatics is now used as an umbrella term for almost all aspects of computational biology. Bioinformatics research will have an impact on all of biology, and virology is not immune from these research methods. Although virology has been slower to embrace bioinformatics this is now changing, particularly in the areas of viral sequences databasing and the systematic identification of viral and host homologous proteins. Here we will review some of these recent advances focusing mainly on the herpesvirus. 相似文献
8.
Novel applications of the ubiquitin-dependent proteolytic pathway in plant genetic engineering. 总被引:1,自引:0,他引:1
One goal of plant genetic engineering is the manipulation of protein levels within crop plants. New insights into the ubiquitin-dependent proteolytic pathway provide potential novel ways of enhancing levels of desired proteins by synthesizing them as ubiquitin fusions, and reducing levels of undesired proteins by selective protein degradation. As a result, the ubiquitin pathway should become a useful tool for many aspects of plant biotechnology. 相似文献
9.
This paper examines the requirements for building database managementsystems and multi-database information resources to supportmolecular biology research. The paper profiles the most importantfeatures of 16 integrated resources and 102 databases relatedto molecular biology research. The aspects surveyed in thispaper include the nature of information in these databases,their sizes, update properties, cross-references, database managementsystem heterogeneity, geographical distribution, data quality,use of temporal information and level of interpretation. Thepaper also comments on the access patterns to these databases.Since not all these aspects were available for all databases,specific comparisons sometimes compare fewer than the full 102databases. Consequently, the same set of databases is not necessarilyalways being compared with respect to every aspect. The paperis organized primarily according to these comparison aspectsand ends with some concluding remarks. 相似文献
10.
Background
It is necessary to analyze microarray experiments together with biological information to make better biological inferences. We investigate the adequacy of current biological databases to address this need. 相似文献11.
Knowledge about the influence of environmental stress such as the action of chemotherapeutic agents on gene expression in Entamoeba histolytica is limited. We plan to use oligonucleotide microarray hybridization to approach these questions. As the basis for our array, sequence data from the genome project carried out by the Institute for Genomic Research (TIGR) and the Sanger Institute were used to annotate parts of the parasite genome. Three subgenomic databases containing enzymes, cytoskeleton genes, and stress genes were compiled with the help of the ExPASy proteomics website and the BLAST servers at the two genome project sites. The known sequences from reference species, mostly human and Escherichia coli, were searched against TIGR and Sanger E. histolytica sequence contigs and the homologs were copied into a Microsoft Access database. In a similar way, two additional databases of cytoskeletal genes and stress genes were generated. Metabolic pathways could be assembled from our enzyme database, but sometimes they were incomplete as is the case for the sterol biosynthesis pathway. The raw databases contained a significant number of duplicate entries which were merged to obtain curated non-redundant databases. This procedure revealed that some E. histolytica genes may have several putative functions. Representative examples such as the case of the delta-aminolevulinate synthase/serine palmitoyltransferase are discussed. 相似文献
12.
Nathan G. Swenson 《Ecography》2014,37(2):105-110
Continental‐scale maps of plant functional diversity are a fundamental piece of data of interest to ecosystem modelers and ecologists, yet such maps have been exceedingly hard to generate. The large effort to compile global plant functional trait databases largely for the purpose of mapping and analyzing the spatial distribution of function has resulted in very sparse data matrices thereby limiting progress. Identifying robust methodologies to gap fill or impute trait values in these databases is an important objective. Here I argue that existing statistical tools from phylogenetic comparative methods can be used to rapidly impute values into global plant functional trait databases due to the large amount of phylogenetic signal often in trait data. In particular, statistical models of phylogenetic signal in traits can be generated from existing data and used to predict missing values of closely related species often with a high degree of accuracy thereby facilitating the continental‐scale mapping of plant function. Despite the promise of this approach, I also discuss potential pitfalls and future challenges that will need to be addressed. 相似文献
13.
Afendi FM Okada T Yamazaki M Hirai-Morita A Nakamura Y Nakamura K Ikeda S Takahashi H Altaf-Ul-Amin M Darusman LK Saito K Kanaya S 《Plant & cell physiology》2012,53(2):e1
A database (DB) describing the relationships between species and their metabolites would be useful for metabolomics research, because it targets systematic analysis of enormous numbers of organic compounds with known or unknown structures in metabolomics. We constructed an extensive species-metabolite DB for plants, the KNApSAcK Core DB, which contains 101,500 species-metabolite relationships encompassing 20,741 species and 50,048 metabolites. We also developed a search engine within the KNApSAcK Core DB for use in metabolomics research, making it possible to search for metabolites based on an accurate mass, molecular formula, metabolite name or mass spectra in several ionization modes. We also have developed databases for retrieving metabolites related to plants used for a range of purposes. In our multifaceted plant usage DB, medicinal/edible plants are related to the geographic zones (GZs) where the plants are used, their biological activities, and formulae of Japanese and Indonesian traditional medicines (Kampo and Jamu, respectively). These data are connected to the species-metabolites relationship DB within the KNApSAcK Core DB, keyed via the species names. All databases can be accessed via the website http://kanaya.naist.jp/KNApSAcK_Family/. KNApSAcK WorldMap DB comprises 41,548 GZ-plant pair entries, including 222 GZs and 15,240 medicinal/edible plants. The KAMPO DB consists of 336 formulae encompassing 278 medicinal plants; the JAMU DB consists of 5,310 formulae encompassing 550 medicinal plants. The Biological Activity DB consists of 2,418 biological activities and 33,706 pairwise relationships between medicinal plants and their biological activities. Current statistics of the binary relationships between individual databases were characterized by the degree distribution analysis, leading to a prediction of at least 1,060,000 metabolites within all plants. In the future, the study of metabolomics will need to take this huge number of metabolites into consideration. 相似文献
14.
Background
Graph-based pathway ontologies and databases are widely used to represent data about cellular processes. This representation makes it possible to programmatically integrate cellular networks and to investigate them using the well-understood concepts of graph theory in order to predict their structural and dynamic properties. An extension of this graph representation, namely hierarchically structured or compound graphs, in which a member of a biological network may recursively contain a sub-network of a somehow logically similar group of biological objects, provides many additional benefits for analysis of biological pathways, including reduction of complexity by decomposition into distinct components or modules. In this regard, it is essential to effectively query such integrated large compound networks to extract the sub-networks of interest with the help of efficient algorithms and software tools. 相似文献15.
W. H. Hodge 《Economic botany》1947,1(2):119-136
Cotton, sugarcane, rice, maize, yuca, bananas, flax and olives grow on the coastal lowlands; oca, ullucu, añu, quinua and temperate climate fruit trees in the mountains; cinchona, coffee, mahogany, Spanish cedar, palms, bamboo and cubé in the forested montana. 相似文献
16.
Evolution of plant senescence 总被引:3,自引:0,他引:3
Background
Senescence is integral to the flowering plant life-cycle. Senescence-like processes occur also in non-angiosperm land plants, algae and photosynthetic prokaryotes. Increasing numbers of genes have been assigned functions in the regulation and execution of angiosperm senescence. At the same time there has been a large expansion in the number and taxonomic spread of plant sequences in the genome databases. The present paper uses these resources to make a study of the evolutionary origins of angiosperm senescence based on a survey of the distribution, across plant and microbial taxa, and expression of senescence-related genes. 相似文献17.
Lauchlan H. Fraser 《Global Change Biology》2020,26(1):189-190
18.
19.
MOTIVATION: The development of an annotated global database suitable for a wide range of investigations is a challenging and labor-intensive task. Thus, the development of databases tailored for specific applications remains necessary. For example, in the field of toxicology, no annotated gene array databases are now available that may assist in the correlation of changes in gene activity to cellular functions and processes associated with the toxic response. RESULTS: As an example of a tailored annotated database, an attempt was made to systematize available biological information on genes present on the Affymetrix Rat Toxicology U34 GeneChip, with a focus on how the gene products relate to liver cells and their response to chemical toxins. The information collected was imbedded in a local relational database to analyze data obtained in toxicological gene array experiments with hydrazine-exposed hepatocytes. The advantages and benefits of the tailored database in the biological interpretation of the results are demonstrated. 相似文献
20.
Metabolic pathway databases such as KEGG contain information on thousands of biochemical reactions drawn from the biomedical literature. Ensuring consistency of such large metabolic pathways is essential to their proper use. In this paper, we present a new method to determine consistency of an important class of biochemical reactions. Our method exploits the knowledge of the atomic rearrangement pattern in biochemical reactions, to reduce the automatic atom mapping problem to a series of chemical substructure searches between the substrate and the product of a biochemical reaction. As an illustrative application, we describe the exhaustive validation of a substantial portion from the latest release of the KEGG LIGAND database. 相似文献