首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enterotoxigenic Escherichia coli (ETEC) infection is the most common type of porcine postweaning colibacillosis (PWC). Among fimbriae of porcine ETEC strains the best studied family of fimbriae are the members of F4 adhesins, existing in at least three variants: ab, ac, ad. Active immunization against porcine PWC is difficult due to: i) ETEC strains are only one of the essential predisposing factors, ii) the success of vaccinal antigen uptake depends on the presence of enterocyte receptors for F4 adhesins, iii) the intestinal immune system may react with tolerance or hypersensitivity to the same antigens depending on the dose and form of the vaccinal immunogen, and iv) kinetics of the specific immune responses may be different in the case of F4 (earlier) and the other ETEC adhesins, particularly F18 (later). The aim of this study was to test the effectiveness of a live attenuated F4ac+ non-ETEC vaccine against porcine PWC by analyzing quantitative differences in the small intestinal lymphoid and myeloid cell subsets of immunized (with or without levamisole given as an adjuvant) vs control non-immunized pigs. Four week-old pigs were intragastrically immunized with a vaccine candidate F4ac + non-ETEC strain 2407 at day 0, challenged 7 days later with a virulent F4ac+ strain ETEC 11-800/1/94, euthanatized at day 13 and sampled for immunohistology. Non-immunized pigs received saline at day 0 and were processed as the principals. Immunophenotypes of lymphoid and myeloid cell subsets were demonstrated within jejunal and ileal mucosa by immunohistochemical avidinbiotin complex method and corresponding morphometric data were analyzed using software program Lucia G for digital image analyses. Monoclonal antibodies reactive with surface molecules on porcine immune cells such as CD3, CD45RA, CD45RC, CD21 and SWC3 enabled clear insight into distribution patterns and amount of these cells within the gut-associated lymphoid tissues (GALT) examined. The numbers of jejunal and ileal cell subsets tested were significantly increased (at P<0.5 or lower) in both principal groups (vaccinated or levamisole primed-vaccinated) of pigs, compared to those recorded in the control non-vaccinated pigs. Based on the histomorphometric quantification of porcine intestinal immune cells from the GALT compartments tested, it is possible to differentiate the responses of pigs immunized by an experimental mucosal vaccine from those of non-immunized pigs.Key words: adjuvanted/nonadjuvanted E. coli vaccine, intestinal immune cells, pigs.  相似文献   

2.
The disaccharide peracetylated GlcNAcβ1–3Galβ-O-naphthalenemethanol (disaccharide 1) diminishes the formation of the glycan sialyl Lewis X (Neu5Acα2–3Galβ1–4(Fucα1–3) GlcNAc; sLeX) in tumor cells. Previous studies showed that the mechanism of action of disaccharide 1 involves three steps: (i) deacetylation by carboxyesterases, (ii) action as a biosynthetic intermediate for downstream enzymes involved in sLeX assembly, and (iii) generation of several glycans related to sLeX. In this report, we show that GlcNAcβ1–3Galβ-O-naphthalenemethanol binds to the acceptor site of human β1–4-galactosyltransferase much like the acceptor trisaccharide, GlcNAcβ1–2Manβ1–6Man, which is present on N-linked glycans. The 4′-deoxy analog, in which the acceptor hydroxyl group was replaced by -H, did not act as a substrate but instead acted as a competitive inhibitor of the enzyme. The acetylated form of this compound inhibited sLeX formation in U937 monocytic leukemia cells, suggesting that it had inhibitory activity in vivo as well. A series of synthetic acetylated analogs of 1 containing -H, -F, -N3, -NH2, or -OCH3 instead of the hydroxyl groups at C-3′- and C-4′-positions of the terminal N-acetylglucosamine residue also blocked sLeX formation in cells. The reduction of sLeX by the 4′-deoxy analog also diminished experimental tumor metastasis by Lewis lung carcinoma in vivo. These data suggest that nonsubstrate disaccharides have therapeutic potential through their ability to bind to glycosyltransferases in vivo and to alter glycan-dependent pathologic processes.The sialylated, fucosylated tetrasaccharide, sLeX,3 is a common carbohydrate determinant present in many O-GalNAc-linked mucins and N-linked glycans that act as selectin ligands (see Ref. 1 and references therein). Expression of sLeX endows tumor cells with the capacity to bind to platelets and endothelial cells in the vasculature via P- and E-selectins, thus facilitating hematogenous metastasis possibly through protection against innate immune cells and by adhesion to the blood vessel wall. Strategies for blocking selectin-carbohydrate interactions include (i) competition by soluble recombinant forms of selectins, glycoprotein ligands, and glycolipids, (ii) peptides based on the primary sequence of the carbohydrate binding site, (iii) anti-selectin antibodies, (iv) oligosaccharides related to LewisX, (v) inositol polyanions and sulfated sugars, (vi) heparin, and (vii) molecular mimics of sLeX, including oligonucleotides (reviewed in Refs. 2 and 3). Analogs of acceptor substrates of the various glycosyltransferases involved in glycan biosynthesis provide another class of potential inhibitors (reviewed in Refs. 4 and 5). Although many of these analogs are effective in vitro, they generally do not exhibit inhibitory activity in cells due to poor membrane permeability. The large number of polar hydroxyl groups and the lack of membrane transporters for oligosaccharides in most cells presumably prevent their uptake (6).In contrast to many of the inhibitors described above, peracetylated disaccharides (e.g. acetylated Galβ1–4GlcNAcβ-O-naphthalenemethanol (NM), acetylated Galβ1–3GalNAcα-O-NM, and acetylated GlcNAcβ1–3Galβ-O-NM) inhibit sLeX biosynthesis in cells (69). These compounds are taken up by cells by passive diffusion and acted on by cytoplasmic or membrane-associated carboxyesterases, which remove the acetyl groups. The compounds gain access to the biosynthetic enzymes located in the Golgi complex, where they serve as substrates, priming oligosaccharide synthesis and generating products related to O-GalNAc-linked mucin oligosaccharides. Priming in this manner diverts the assembly of the O-linked chains from endogenous glycoproteins, resulting in inhibition of expression of terminal Lewis antigens that are recognized by selectins. Inhibition occurs at a much lower dose than for monosaccharide-based agents, such as GalNAcβ-O-benzyl (∼25 μm versus 1–2 mm, respectively) (10, 11). Furthermore, the disaccharides appear to selectively affect sLeX formation, since sLea expression was unaffected (12). By blocking selectin ligand expression, these compounds block both experimental and spontaneous metastasis (12, 13).In this study, we have examined acetylated disaccharide analogs that have been modified so that after deacetylation their activity as substrates would be altered. Characterization of the 4′-deoxy derivative using β1–4-galactosyltransferase 1 as a model showed that it acts by competitively inhibiting the enzyme. Interestingly, the peracetylated form of this analog maintains the capacity to inhibit sLeX expression in U937 lymphoma cells and Lewis lung carcinoma (LLC) cells and block tumor formation in vivo. Thus, the deoxy analog presumably inhibits one or more galactosyltransferases in vivo, thereby blocking sLeX formation and experimental tumor cell metastasis without generation of oligosaccharide products.  相似文献   

3.
Bao WB  Ye L  Pan ZY  Zhu J  Du ZD  Zhu GQ  Huang XG  Wu SL 《Molecular biology reports》2012,39(3):3131-3136
Escherichia coli F18 (ECF18) is a common porcine enteric pathogen. The pathogenicity of ECF18 bacteria depends on the existence of ECF18 receptor in the brush border membranes of piglet’s small intestinal mucosa. Alpha (1) fucosyltransferase gene (FUT1) has been identified as the candidate gene controlling the adhesion to ECF18 receptor. The genetic variations in the position of M307 nucleotide in open reading frame of FUT1 have been proposed as a marker for selecting resistant pigs. The piglets were divided into three groups, AA, AG and GG, according to the genotypes present at M307 of FUT1. Small intestinal epithelium cells of piglets with AA, AG and GG genotypes were selected to test the adhesion capability of the wild type E.coli expressing F18ab fimbriae, the recombinant E. coli expressing F18ac fimbriae or the recombinant E. coli secreting and surface-displaying the FedF subunit of F18ab fimbriae, respectively. Here, we examined the distribution and expression of porcine FUT1 mRNA in different tissues in Sutai pigs using real-time PCR. The results showed that piglets with AA genotype show resistance, whereas piglets with GG or AG genotypes are sensitive to the pathogenic E. coli F18 in Sutai piglets. FUT1 was expressed in all the tissues that were examined, and the gene’s expression was highest in the lungs. There was no significant difference in expression level among the three genotypes in the liver, lung, stomach and duodenum, where the gene expression was relatively high. The present analysis suggested that mutation at M307 in FUT1 gene determines susceptibility of small intestinal epithelium to E. coli F18 adhesion in Sutai piglet and the expression of FUT1 gene may be regulated by other factors or the mutation was likely to be in linkage disequilibrium with some cis-regulatory variants.  相似文献   

4.
Enterotoxigenic Escherichia coli (ETEC) with fimbriae of the F4 family are one of the major causes of diarrhea and death among neonatal and young piglets. Bacteria use the F4 fimbriae to adhere to specific receptors expressed on the surface of the enterocytes. F4 fimbriae exist in three different antigenic variants, F4ab, F4ac, and F4ad, of which F4ac is the most common. Resistance to ETEC F4ab/F4ac adhesion in pigs has been shown to be inherited as an autosomal recessive trait. In previous studies the ETEC F4ab/F4ac receptor locus (F4bcR) was mapped to the q41 region on pig chromosome 13. A polymorphism within an intron of the mucin 4 (MUC4) gene, which is one of the possible candidate genes located in this region, was shown earlier to cosegregate with the F4bcR alleles. Recently, we discovered a Large White boar from a Swiss experimental herd with a recombination between F4bcR and MUC4. A three?Cgeneration pedigree including 45 offspring was generated with the aim to use this recombination event to refine the localization of the F4bcR locus. All pigs were phenotyped using the microscopic adhesion test and genotyped for a total of 59 markers. The recombination event was mapped to a 220-kb region between a newly detected SNP in the leishmanolysin-like gene (LMLN g.15920) and SNP ALGA0072075. In this study the six SNPs ALGA0072075, ALGA0106330, MUC13-226, MUC13-813, DIA0000584, and MARC0006918 were in complete linkage disequilibrium with F4bcR. Based on this finding and earlier investigations, we suggest that the locus for F4bcR is located between the LMLN locus and microsatellite S0283.  相似文献   

5.
F4 enterotoxigenic Escherichia coli (F4 ETEC) are an important cause of diarrhea in neonatal and newly-weaned pigs. Based on the predicted differential O-glycosylation patterns of the 2 MUC13 variants (MUC13A and MUC13B) in F4ac ETEC susceptible and F4ac ETEC resistant pigs, the MUC13 gene was recently proposed as the causal gene for F4ac ETEC susceptibility. Because the absence of MUC13 on Western blot from brush border membrane vesicles of F4ab/acR+ pigs and the absence of F4ac attachment to immunoprecipitated MUC13 could not support this hypothesis, a new GWAS study was performed using 52 non-adhesive and 68 strong adhesive pigs for F4ab/ac ETEC originating from 5 Belgian farms. A refined candidate region (chr13: 144,810,100–144,993,222) for F4ab/ac ETEC susceptibility was identified with MUC13 adjacent to the distal part of the region. This candidate region lacks annotated genes and contains a sequence gap based on the sequence of the porcine GenomeBuild 10.2. We hypothesize that a porcine orphan gene or trans-acting element present in the identified candidate region has an effect on the glycosylation of F4 binding proteins and therefore determines the F4ab/ac ETEC susceptibility in pigs.  相似文献   

6.
Type I fimbriae commonly expressed by Escherichia coli mediate initial attachment of bacteria to host epithelial cells. However, the role of type I fimbriae in the adherence of porcine enterotoxigenic E. coli (ETEC) to host receptors is unclear. In this study, we examined the role of type I fimbriae in the adherence and biofilm formation of F18ac+ ETEC by constructing mutant strains with deletion of type I fimbrial major subunit (fimA) or minor subunit (fimH). The data indicated that the isogenic ΔfimA and ΔfimH mutants showed significantly lower adherence to porcine epithelial IPEC-1 and IPEC-J2 cells as compared to the F18ac+ ETEC parent strain. In addition, the adherence of F18ac+ ETEC to both cell lines was blocked by the presence of 0.5% D-mannose in the cell culture medium. In addition, both mutant strains impaired their ability to form biofilm in vitro. Interestingly, the deletion of fimA or fimH genes resulted in remarkable up-regulation of the expression of adhesin involved in diffuse adherence (AIDA-I). These results indicated that type I fimbriae may be required for efficient adherence of F18ac+ ETEC to pig epithelial cells and, perhaps, biofilm formation.  相似文献   

7.
The T-synthase is the key β3-galactosyltransferase essential for biosynthesis of core 1 O-glycans (Galβ1–3GalNAcα1-Ser/Thr) in animal cell glycoproteins. Here we describe the novel ability of an endoplasmic reticulum-localized molecular chaperone termed Cosmc to specifically interact with partly denatured T-synthase in vitro to cause partial restoration of activity. By contrast, a mutated form of Cosmc observed in patients with Tn syndrome has reduced chaperone function. The chaperone activity of Cosmc is specific, does not require ATP in vitro, and is effective toward T-synthase but not another β-galactosyltransferase. Cosmc represents the first ER chaperone identified to be required for folding of a glycosyltransferase.  相似文献   

8.
Enterotoxigenic Escherichia coli (ETEC) strains are important causes of intestinal disease in humans and lead to severe production losses in animal farming. A range of fimbrial adhesins in ETEC strains determines host and tissue tropism. ETEC strains expressing F4 fimbriae are associated with neonatal and post-weaning diarrhea in piglets. Three naturally occurring variants of F4 fimbriae (F4ab, F4ac, and F4ad) exist that differ in the primary sequence of their major adhesive subunit FaeG, and each features a related yet distinct receptor binding profile. Here the x-ray structure of FaeGad bound to lactose provides the first structural insight into the receptor specificity and mode of binding by the poly-adhesive F4 fimbriae. A small D′-D″-α1-α2 subdomain grafted on the immunoglobulin-like core of FaeG hosts the carbohydrate binding site. Two short amino acid stretches Phe150–Glu152 and Val166–Glu170 of FaeGad bind the terminal galactose in the lactosyl unit and provide affinity and specificity to the interaction. A hemagglutination-based assay with E. coli expressing mutant F4ad fimbriae confirmed the elucidated co-complex structure. Interestingly, the crucial D′-α1 loop that borders the FaeGad binding site adopts a different conformation in the two other FaeG variants and hints at a heterogeneous binding pocket among the FaeG serotypes.  相似文献   

9.
10.
利用PCR技术以猪产肠毒素大肠杆菌F18标准菌株107/86和2134P基因组DNA为模板成功地扩增出编码F18ab和F18ac完整菌毛操纵子fed基因。将它们分别克隆入表达质粒载体pET-22b( ),结合酶切和核苷酸序列分析证明了PCR预期扩增产物的正确性。然后将克隆的重组载体DNA转化至大肠杆菌BL21(DE3),构建和筛选出分别含F18ab和F18ac完整fed基因的重组菌,经过IPTG诱导表达,在电镜下观察到上述两种重组菌能分别大量表达F18ab和F18ac菌毛。用热抽提法提纯其诱导表达的F18ab和F18ac菌毛,经SDS-PAGE电泳和考马斯亮蓝染色发现提纯后菌毛获单一分子量约为15kDa蛋白条带,免疫家兔后制备出高效价的兔抗血清,玻板凝集试验和Western blot结果表明:体外诱导表达的F18ab和F18ac菌毛具有和野生F18菌毛相同的抗原性。用表达F18ab和F18ac菌毛的上述2株重组菌分别进行小肠上皮细胞体外吸附试验和吸附抑制试验,结果表明:2株重组菌和野生菌株一样具有较强的粘附易感仔猪小肠上皮细胞的能力,而用表达F18ab和F18ac重组菌提纯的菌毛制备出兔抗血清都能有效地抑制上述重组菌或野生菌株对易感仔猪小肠上皮细胞的吸附结合。  相似文献   

11.
12.
Changes in glycosphingolipid structures have been shown to occur during the development of several types of human cancers, generating cancer-specific carbohydrate structures that could be used as biomarkers for diagnosis and therapeutic targeting. In this study, we characterized nonacid glycosphingolipids isolated from a human gastric adenocarcinoma by mass spectrometry, enzymatic hydrolysis, and by binding with a battery of carbohydrate-recognizing ligands. We show that the majority of the complex nonacid glycosphingolipids had type 2 (Galβ4GlcNAc) core chains (neolactotetraosylceramide, the Lex, H type 2, x2, and the P1 pentaosylceramides, and the Ley, A type 2, and neolacto hexaosylceramides). We also found glycosphingolipids with type 1 (Galβ3GlcNAc) core (lactotetraosylceramide and the H type 1 pentaosylceramide) and globo (GalαGal) core chains (globotriaosylceramide and globotetraosylceramide). Interestingly, we characterized two complex glycosphingolipids as a P1 heptaosylceramide (Galα4Galβ4GlcNAcβ3Galβ4GlcNAcβ3Gal β4Glcβ1Cer) and a branched P1 decaosylceramide (Galα4Gal β4GlcNAcβ3(Galα4Galβ4GlcNAcβ6)Galβ4GlcNAcβ3Galβ4Glc β1Cer). These are novel glycosphingolipid structures and the first reported cases of complex glycosphingolipids larger than pentaosylceramide carrying the P1 trisaccharide. We propose that these P1 glycosphingolipids may represent potential biomarkers for the early diagnosis of gastric cancer.  相似文献   

13.
The first step in the pathogenesis of enterotoxigenic Escherichia coli (ETEC) infections is adhesion of the bacterium to the small intestinal epithelium. Adhesion of ETEC is mediated by a number of antigenically distinct colonization factors, and among these, one of the most commonly detected is the non-fimbrial adhesin coli surface antigen 6 (CS6). The potential carbohydrate recognition by CS6 was investigated by binding of recombinant CS6-expressing E. coli and purified CS6 protein to a large number of variant glycosphingolipids separated on thin-layer chromatograms. Thereby, a highly specific binding of the CS6-expressing E. coli, and the purified CS6 protein, to sulfatide (SO3-3Galβ1Cer) was obtained. The binding of the CS6 protein and CS6-expressing bacteria to sulfatide was inhibited by dextran sulfate, but not by dextran, heparin, galactose 4-sulfate or galactose 6-sulfate. When using recombinantly expressed and purified CssA and CssB subunits of the CS6 complex, sulfatide binding was obtained with the CssB subunit, demonstrating that the glycosphingolipid binding capacity of CS6 resides within this subunit. CS6-binding sulfatide was present in the small intestine of species susceptible to CS6-mediated infection, e.g. humans and rabbits, but lacking in species not affected by CS6 ETEC, e.g. mice. The ability of CS6-expressing ETEC to adhere to sulfatide in target small intestinal epithelium may thus contribute to virulence.  相似文献   

14.

Background

Integrin beta-5 (ITGB5) and mucin 13 (MUC13) genes are highly expressed on the apical surface of intestinal epithelia and are thought to be candidate genes for controlling the expression of the receptor for enterotoxigenic Escherichia coli (ETEC) F4ac. Human MUC13 protein has an expected role in protecting intestinal mucosal surfaces and porcine ITGB5 is a newly identified potential receptor for ETEC F4ac.

Methodology/Principal Findings

To test the hypothesis that ITGB5 and MUC13 both play key roles in protection of the intestinal mucosa against pathogenic bacterium, porcine intestinal epithelial cells (IPEC-J2) were transfected with ITGB5-targeting, MUC13-targeting or negative control small interfering RNA (siRNA), respectively. Firstly, we measured mRNA expression levels of mucin genes (MUC4, MUC20), pro-inflammatory genes (IL8, IL1A, IL6, CXCL2), anti-inflammatory mediator SLPI, and PLAU after RNAi treatments with and without ETEC infection. Secondly, we compared the adhesions of ETEC to the pre- and post-knockdown IPEC-J2 cells of ITGB5 and MUC13, respectively. We found that ITGB5 and MUC13 knockdown both had small but significant effects in attenuating the inflammation induced by ETEC infection, and both increased bacterial adhesion in response to F4ac ETEC exposure.

Conclusions/Significance

Our current study first reported that ITGB5 and MUC13 are important adhesion molecules of mucosal epithelial signaling in response to Escherichia coli in pigs. These data suggest that both ITGB5 and MUC13 play key roles in defending the attachment and adhesion of ETEC to porcine jejunal cells and in maintaining epithelial barrier and immunity function.  相似文献   

15.
Immunoprophylaxis of porcine postweaning colibacillosis (PWC) caused by enterotoxigenic Escherichia coli (ETEC) expressing F4 fimbriae is an unsolved problem. Just as ETEC strains can exploit intestinal microfold (M) cells as the entry portal for infection, their high transcytotic ability make them an attractive target for mucosally delivered vaccines, adjuvants and therapeutics. We have developed a model of parenteral/oral immunization of 4-weeks-old pigs with either levamisole or vaccine candidate F4ac+ non-ETEC strain to study their effects on de novo differentiation of antigen-sampling M cells. Identification, localization and morphometric quantification of cytokeratin 18 positive M cells in the ileal mucosa of 6-weeks-old pigs revealed that they were: 1) exclusively located within villous epithelial layer, 2) significantly numerous (P< 0.01) in levamisole pretreated/challenged pigs, and 3) only slightly, but not significantly numerous in vaccinated/challenged pigs compared with non-pretreated/challenged control pigs. The fact that levamisole may affect the M cells frequency by increasing their numbers, makes it an interesting adjuvant to study development of an effective M cell-targeted vaccine against porcine PWC.Key words: M cells, levamisole, E. coli vaccine, weaned pigs.  相似文献   

16.
We previously found that pigeon IgG possesses unique N-glycan structures that contain the Galα1–4Galβ1–4Galβ1–4GlcNAc sequence at their nonreducing termini. This sequence is most likely produced by putative α1,4- and β1,4-galactosyltransferases (GalTs), which are responsible for the biosynthesis of the Galα1–4Gal and Galβ1–4Gal sequences on the N-glycans, respectively. Because no such glycan structures have been found in mammalian glycoproteins, the biosynthetic enzymes that produce these glycans are likely to have distinct substrate specificities from the known mammalian GalTs. To study these enzymes, we cloned the pigeon liver cDNAs encoding α4GalT and β4GalT by expression cloning and characterized these enzymes using the recombinant proteins. The deduced amino acid sequence of pigeon α4GalT has 58.2% identity to human α4GalT and 68.0 and 66.6% identity to putative α4GalTs from chicken and zebra finch, respectively. Unlike human and putative chicken α4GalTs, which possess globotriosylceramide synthase activity, pigeon α4GalT preferred to catalyze formation of the Galα1–4Gal sequence on glycoproteins. In contrast, the sequence of pigeon β4GalT revealed a type II transmembrane protein consisting of 438 amino acid residues, with no significant homology to the glycosyltransferases so far identified from mammals and chicken. However, hypothetical proteins from zebra finch (78.8% identity), frogs (58.9–60.4%), zebrafish (37.1–43.0%), and spotted green pufferfish (43.3%) were similar to pigeon β4GalT, suggesting that the pigeon β4GalT gene was inherited from the common ancestors of these vertebrates. The sequence analysis revealed that pigeon β4GalT and its homologs form a new family of glycosyltransferases.  相似文献   

17.
The aim of this study was to refine the localization of the receptor locus for fimbriae F4ac. Small intestinal enterocyte preparations from 187 pigs were phenotyped by an in vitro adhesion test using two strains of Escherichia coli representing the variants F4ab and F4ac. The three-generation pedigree comprised eight founders, 18 F1 and 174 F2 animals, for a total of 200 pigs available for the linkage analysis. Results of the adhesion tests on 171 F2 pigs slaughtered at 8 weeks of age show that 23.5% of the pigs were adhesive for F4ab and non-adhesive for F4ac (phenotype F4abR+/F4acR-; R means receptor). Pigs of this phenotype were characterized by a weak adhesion receptor for F4ab. No pigs were found expressing only F4acR and lacking F4abR. Receptors for F4ab and F4ac (F4abR+/F4acR+) were expressed by 54.5% of the pigs. Animals of this phenotype strongly bound both F4ab and F4ac E. coli. In the segregation study, the serum transferrin (TF) gene and 10 microsatellites on chromosome 13 were linked with F4acR (recombination fractions (theta) between 0.00 and 0.11 and lod score values (Z) between 11.4 and 40.4). The 11-point analysis indicates the F4acR locus was located in the interval S0068-Sw1030 close to S0075 and Sw225, with recombination fractions (theta) of 0.05 between F4acR and S0068, 0.04 with Sw1030, and 0.00 with S0075 and Sw225. The lack of pigs displaying the F4abR-/F4acR+ phenotype and the presence of two phenotypes for F4abR (a strong receptor present in phenotype F4abR+/F4acR+ and a weak receptor in phenotype F4abR+/F4acR-) led us to conclude that the receptor for F4ac binds F4ab bacteria as well, and that it is controlled by one gene localized between S0068 and Sw1030 on chromosome 13.  相似文献   

18.
A key virulence trait of pathogenic bacteria is the ability to bind to receptors on mucosal cells. Here the potential glycosphingolipid receptors of enterohemorrhagic Escherichia coli were examined by binding of 35S-labeled bacteria to glycosphingolipids on thin-layer chromatograms. Thereby a selective interaction with two nonacid glycosphingolipids of cat small intestinal epithelium was found. The binding-active glycosphingolipids were isolated and, on the basis of mass spectrometry, proton NMR spectroscopy, and degradation studies, identified as Galalpha3Galbeta4Glcbeta1Cer (isoglobotriaosylceramide) and Galalpha3Galalpha3Galbeta4Glcbeta1Cer. The latter glycosphingolipid has not been described before. The interaction was not based on terminal Galalpha3 because the bacteria did not recognize the structurally related glycosphingolipids Galalpha3Galalpha4Galbeta4Glcbeta1Cer and Galalpha3Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer (B5 glycosphingolipid). However, further binding assays using reference glycosphingolipids showed that the enterohemorrhagic E. coli also bound to lactosylceramide with phytosphingosine and/or hydroxy fatty acids, suggesting that the minimal structural element recognized is a correctly presented lactosyl unit. Further binding of neolactotetraosylceramide, lactotetraosylceramide, the Le(a)-5 glycosphingolipid, as well as a weak binding to gangliotriaosylceramide and gangliotetraosylceramide, was found in analogy with binding patterns that previously have been described for other bacteria classified as lactosylceramide-binding.  相似文献   

19.
A combination of uni- and multiplex PCR assays targeting 58 virulence genes (VGs) associated with Escherichia coli strains causing intestinal and extraintestinal disease in humans and other mammals was used to analyze the VG repertoire of 23 commensal E. coli isolates from healthy pigs and 52 clinical isolates associated with porcine neonatal diarrhea (ND) and postweaning diarrhea (PWD). The relationship between the presence and absence of VGs was interrogated using three statistical methods. According to the generalized linear model, 17 of 58 VGs were found to be significant (P < 0.05) in distinguishing between commensal and clinical isolates. Nine of the 17 genes represented by iha, hlyA, aidA, east1, aah, fimH, iroNE. coli, traT, and saa have not been previously identified as important VGs in clinical porcine isolates in Australia. The remaining eight VGs code for fimbriae (F4, F5, F18, and F41) and toxins (STa, STb, LT, and Stx2), normally associated with porcine enterotoxigenic E. coli. Agglomerative hierarchical algorithm analysis grouped E. coli strains into subclusters based primarily on their serogroup. Multivariate analyses of clonal relationships based on the 17 VGs were collapsed into two-dimensional space by principal coordinate analysis. PWD clones were distributed in two quadrants, separated from ND and commensal clones, which tended to cluster within one quadrant. Clonal subclusters within quadrants were highly correlated with serogroups. These methods of analysis provide different perspectives in our attempts to understand how commensal and clinical porcine enterotoxigenic E. coli strains have evolved and are engaged in the dynamic process of losing or acquiring VGs within the pig population.  相似文献   

20.
Niu X  Li Y  Ding X  Zhang Q 《Animal genetics》2011,42(5):552-555
Enterotoxigenic Escherichia coli expressing F4 fimbriae is the major cause of diarrhoea in neonatal and post-weaning piglets. Previous studies have revealed that the loci controlling the F4ab/F4ac receptors are located on SSC13q41, between markers SW207 and S0283. In this study, we refined their positions in a two generation population containing 366 piglets of three breeds (Large White, Landrace, and Songliao Black). Nine microsatellite markers within this region were selected from the MARC (U.S. Meat Animal Research Center) porcine linkage map, and the pedigree disequilibrium test was employed for fine-mapping. The F4abR gene was located in the interval between S0283 and SW1833, a 4.8-cM region, and the F4acR gene was located in the interval between S0283 and SW1876, a 1.6-cM region. Our results also suggest that the F4ab/F4ac receptors might be controlled by two different but closely linked loci. The results of microsatellite-based haplotype analysis in the corresponding region show that some specific haplotypes were overwhelmingly present in the adhesive or non-adhesive animals, indicating that there are mutations within the identified regions that are strongly associated with the F4ab/ac phenotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号