首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We analyzed the role of gangliosides in the association of the ErbB2 receptor tyrosine-kinase (RTK) with lipid rafts in mammary epithelial HC11 cells. Scanning confocal microscopy experiments revealed a strict ErbB2-GM3 colocalization in wild-type cells. In addition, analysis of membrane fractions obtained using a linear sucrose gradient showed that ErbB2, epidermal growth factor receptor (EGFR) and Shc-p66 (proteins correlated with the ErbB2 signal transduction pathway) were preferentially enriched in lipid rafts together with gangliosides. Blocking of endogenous ganglioside synthesis by (+/-)-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol hydrochloride ([D]-PDMP) induced a drastic cell-surface redistribution of ErbB2, EGFR and Shc-p66, within the Triton-soluble fractions, as revealed by linear sucrose-gradient analysis. This redistribution was partially reverted when exogenous GM3 was added to ganglioside-depleted HC11 cells. The results point out the key role of ganglioside GM3 in retaining ErbB2 and signal-transduction-correlated proteins in lipid rafts.  相似文献   

2.
Two independent approaches were employed to explore the potential role of endogenous glucosylceramide or a closely related glucosphingolipid in mediating the cellular proliferation of Madin-Darby canine kidney cells. First, cultured cells were depleted of glucosphingolipids by exposure to a glucosylceramide synthase inhibitor, D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol. This agent markedly inhibited cell growth and DNA synthesis in a time- and concentration-dependent manner. Second, cells were grown in the presence of conduritol B epoxide, an inhibitor of glucosylceramide beta-D-glucosidase. Exposure of cells to this inhibitor resulted in the time-dependent accumulation of glucosylceramide with a corresponding increase in cellular proliferation. Alterations in protein kinase C activity were evaluated as a potential mechanism for these effects on growth. Both membrane- and cytosol-associated protein kinase C (PKC) activity declined under conditions of glucosylceramide synthase inhibition and increased under conditions of beta-glucosidase inhibition. The changes in PKC activity were evident after DEAE-cellulose purification. Diacylglycerol levels increased in response to both glucosylceramide synthase and beta-glucosidase inhibition. Ceramide and sphingosine levels changed only in the presence of D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol, increasing due to lack of conversion to glucosylceramide. However, the elevation in endogenous sphingosine was probably insufficient to account for the decrease in PKC, considering the high level of diacylglycerol in the cells. These data demonstrate an association between glucosylceramide levels, PKC activity, and cell growth.  相似文献   

3.
Cell motility is highly dependent on the organization and function of microdomains composed of integrin, proteolipid/tetraspanin CD9, and ganglioside (Ono, M., Handa, K., Sonnino, S., Withers, D. A., Nagai, H., and Hakomori, S. (2001) Biochemistry 40, 6414-6421; Kawakami, Y., Kawakami, K., Steelant, W. F. A., Ono, M., Baek, R. C., Handa, K., Withers, D. A., and Hakomori, S. (2002) J. Biol. Chem. 277, 34349-34358), later termed "glycosynapse 3" (Hakomori, S., and Handa, K. (2002) FEBS Lett. 531, 88-92, 2002). Human bladder cancer cell lines KK47 (noninvasive and nonmetastatic) and YTS1 (highly invasive and metastatic), both derived from transitional bladder epithelia, are very similar in terms of integrin composition and levels of tetraspanin CD9. Tetraspanin CD82 is absent in both. The major difference is in the level of ganglioside GM3, which is several times higher in KK47 than in YTS1. We now report that the GM3 level reflects glycosynapse function as follows: (i) a stronger interaction of integrin alpha3 with CD9 in KK47 than in YTS1; (ii) conversion of benign, low motility KK47 to invasive, high motility cells by depletion of GM3 by P4 (D-threo-1-phenyl-2-palmitoylamino-3-pyrrolidino-1-propanol) treatment or by knockdown of CD9 by the RNA interference method; (iii) reversion of high motility YTS1 to low motility phenotype like that of KK47 by exogenous GM3 addition, whereby the alpha3-to-CD9 interaction was enhanced; (iv) low GM3 level activated c-Src in YTS1 or in P4-treated KK47, and high GM3 level by exogenous addition caused Csk translocation into glycosynapse, with subsequent inhibition of c-Src activation; (v) inhibition of c-Src by "PP2" in YTS1 greatly reduced cell motility. Thus, GM3 in glycosynapse 3 plays a dual role in defining glycosynapse 3 function. One is by modulating the interaction of alpha3 with CD9; the other is by activating or inhibiting the c-Src activity, possibly through Csk translocation. High GM3 level decreases tumor cell motility/invasiveness, whereas low GM3 level enhances tumor cell motility/invasiveness. Oncogenic transformation and its reversion can be explained through the difference in glycosynapse organization.  相似文献   

4.
目的:研究内源性神经节苷脂对大鼠嗜铬细胞瘤细胞株(PC12)脂多糖(LPS)损伤后的作用及机制。方法:培养PC12细胞,建立LPS损伤模型,采用MTT法检测不同浓度LPS对PC12细胞存活率的改变、葡萄糖神经酰胺合成酶抑制剂D(D-PDMP)耗竭内源性神经节苷脂时LPS对PC12细胞存活率的改变以及添加外源性神经节苷脂GM1后对PC12细胞存活率的保护作用;倒置显微镜和荧光显微镜观察细胞状态;RT-PCR检测NF-κB的相对表达含量。结果:LPS能导致PC12细胞形态学的改变及存活率下降,且随着LPS浓度的增加细胞存活率逐渐降低;神经节苷脂GM1能明显改善LPS所致的细胞形态学以及存活率的改变;工具药D-PDMP耗竭内源性神经节苷脂后,LPS对PC12细胞的损伤更严重,添加外源性神经节苷脂GM1,细胞形态学及存活率得到明显改善,细胞存活率上升;LPS损伤时细胞内NF-κB含量增加;D-PDMP预先耗竭内源性神经节苷脂时NF-κB含量增加更多;添加外源性神经节苷脂GM1后NF-κB含量降低。结论:内源性神经节苷脂对PC12细胞LPS损伤具有保护作用,可能是通过NF-κB信号通路来发挥作用的。  相似文献   

5.
《Autophagy》2013,9(6):860-861
Gangliosides are abundantly expressed in the nervous system, and deregulated expression or activity of gangliosides is associated with the progression of various disorders, including lysosomal storage diseases, Guillian-Barre syndrome, and Alzheimer disease. By contrast, previous studies show that GM1 ganglioside may act in a protective manner in the drug (e.g., MPTP and 6-OHDA)-induced Parkinsonian models, although the precise mechanisms have not been well addressed. In our recent publication, dementia with Lewy bodies (DLB)-linked neuroblastoma cells were treated with D-Threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), an inhibitor of glycosyl ceramide synthetase. These PDMP-treated cells develop lysosomal diseases characterized by reduced lysosomal activity, enhanced lysosomal permeability and cytotoxicity. Furthermore, PDMP-mediated inhibition of autophagy-lysosomal pathway result in both accumulation of α-synuclein and mutant β-synuclein. Finally, these phenotypes are reversed by ganglioside treatment. Taken together, our results suggest that endogenous gangliosides may play a protective role against the lysosomal pathology of synucleinopathies.  相似文献   

6.
Mouse F9 embryonal carcinoma cells have been widely used as a model for studying the mechanism of embryonic differentiation, because they are similar to the inner cell mass of early mouse embryos and can differentiate into primitive endoderm (PrE) following retinoic acid (RA) treatment. During F9 cell differentiation, the carbohydrate chains of glycoproteins and their corresponding glycosyltransferases are known to undergo rapid changes. However, there have been no corresponding reports on the expression of gangliosides. We have developed a custom cDNA array that is highly sensitive for the genes responsible for sphingolipid (SL) biosynthesis and metabolism. Using this, we found that, of the 28 selected genes, 26 exhibited increased expression during F9 differentiation into PrE. Although neutral glycosphingolipids (GSLs) were expressed at similar levels before and after differentiation, a greater than 20-fold increase in total ganglioside content was evident in PrE. Glucosylceramide synthase inhibitors (d-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol [d-PDMP] and its analog) depleted gangliosides and this resulted in delayed expression of Disabled-2 (Dab-2), suggesting the involvement of gangliosides in F9 cell differentiation. Disruption of cholesterol-enriched membrane microdomains by methyl-beta-cyclodextrin (MbetaCD) also delayed differentiation. Both MbetaCD and d-PDMP blocked the accumulation of Src family kinases (SFKs) to microdomains. However, d-PDMP did not block flotillin accumulation, yet MbetaCD did. Additionally, confocal laser microscopy revealed the formation of distinct functional microdomains integrating SFKs with gangliosides and cholesterol during PrE differentiation. Thus, we demonstrate the outstanding up-regulation of ganglioside biosynthesis and its importance in the formation of distinct microdomains incorporating SFKs with gangliosides during RA-induced differentiation of F9 cells.  相似文献   

7.
8.
Incubating B16 melanoma cells with an inhibitor of glucosylceramide (GlcCer) synthetase, D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-threo-PDMP), led to a considerable decrease in the levels of GlcCer and lactosylceramide (LacCer). The content of ganglioside GM3 was little affected, but the ability to bind a monoclonal antibody against the ganglioside (M2590) was greatly reduced, suggesting that the reduction in the simple glycolipids led to encryption of the membrane antigen. This interpretation is supported by the observation that permeabilization of the treated cells with Triton X-100 restored immunological reactivity. Specificity of the PDMP effect was shown by its lack of effect on the reactivity of two other surface antigens to anti-melanoma monoclonal antibodies M562 and M622, and of the major histocompatibility antigens to anti-H-2KbDb monoclonal antibody. The ability of the treated cells to attach to laminin or type IV collagen was lost but that to fibronectin was not. The effects of the enzyme inhibitor were counteracted by including GlcCer in the culture medium. This indicates that the lipid was absorbed by the cells and utilized like endogenously-formed GlcCer. Cells preattached to laminin or collagen could be induced to round up by addition of inhibitor. In contrast, L-threo-PDMP (which does not block the synthesis of GlcCer) had no effect on the immunologic reactivity of GM3 or the adhesion properties of the cells. However, it did produce considerable accumulation of LacCer. These data suggest that the simple glycolipid, GlcCer, is an essential factor for antigenic expression of the more complex glycolipids on cell surfaces and that there is a close association and interaction between glycolipids and adhesive receptors on the cell surface.  相似文献   

9.
Abstract: We reported previously that stereoisomers of 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), the d - threo and l - threo forms, exerted inhibitory and stimulatory effects on glycosphingolipid (GSL) biosynthesis in B16 melanoma cells, respectively. In the present study, the primary cultured rat neocortical explants were treated with l - or d - threo -PDMP. These isomers exhibited opposite effects on neurite outgrowth: d -PDMP was inhibitory at concentrations ranging from 5 to 20 µ M , whereas l -PDMP was stimulatory over the same concentration range, and the maximal effect was observed at 10–15 µ M . Rat neocortical explants were doubly labeled with [14C]serine and [3H]galactose at 15 µ M l - or d -PDMP. l -PDMP increased the incorporations of both labels into sphinganine, sphingosine, ceramide, sphingomyelin, neutral GSLs, and gangliosides, whereas d -PDMP inhibited the glucosylation of ceramide resulting in a reduction of ganglioside biosynthesis and accumulation of precursors of glucosylceramide, ceramide, and sphingomyelin. To clarify the stimulatory effect of l -PDMP on GSL biosynthesis, serine palmitoyltransferase, sphingosine N -acyltransferase, glucosylceramide synthase, lactosylceramide synthase, GM3 synthase, and GD3 synthase were quantified in cell lysates of explants pretreated with this agent. Serine palmitoyltransferase was fully activated up to 150% of the control. Furthermore, marked increases in the activities of lactosylceramide synthase (200%), GM3 synthase (240%), and GD3 synthase (300%) were observed. These results suggest that the neurotrophic action of l -PDMP may be ascribable to its stimulatory effect on the biosynthesis of GSLs, especially that of gangliosides.  相似文献   

10.
Glycosphingolipids and their metabolites play important roles in a variety of biological processes. Several signal molecules are localized in a glycolipid-enriched microdomain on the cell surface, and their signals are regulated by the glycolipid composition. However, the function of glycolipids in osteoclastogenesis has not been clearly understood. We found that D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP), a glucosylceramide synthase inhibitor, completely inhibits the osteoclast formation induced by macrophage-colony-stimulating factor and receptor activator of nuclear factor-kappa B ligand (RANKL) in a dose-dependent manner. Expression of RANK, the receptor of RANKL, induced by macrophage colony-stimulating factor, was reduced markedly in D-PDMP-treated cells. d-PDMP also inhibited the phosphorylation of the inhibitor of nuclear factor-kappa B and extracellular signal-regulated kinase 1/2 induced by RANKL. In several experiments with the addition of glycolipids to D-PDMP-treated purified bone marrow cells, lactosylceramide (LacCer) strongly affected the differentiation into tartrate-resistant acid phosphatase mononucleated cells, but not positive multinucleated cells. GM3 and GM1 also recovered, but less effectively compared with LacCer. Moreover, exogenous LacCer recovered the reduced expression of RANK and the phosphorylation of inhibitor of NF-kappa B and extracellular signal-regulated kinase 1/2 after stimulation by RANKL at the same level of cells without D-PDMP treatment. Our data suggest that glycosphingolipids, especially LacCer, are necessary for the initiation step of RANKL-induced osteoclastogenesis.  相似文献   

11.
We report that apoptosis induced by N-hexanoylsphingosine (C6-Cer) in CHP-100 human neuroepithelioma cells associates with accumulation of monohexosylsphingolipids produced not only by short-chain ceramide glycosylation but also through glycosylation of a ceramide pool endogenously produced. By high-performance thin layer chromatography on borate silica gel plates, newly formed monohexosylsphingolipids were identified as glucosylceramides (GluCer); however, accumulation of lactosylceramide or higher-order glycosphingolipids was not observed. GluCer accumulation was fully suppressed by D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol; moreover, while this inhibitor had no effect on cell viability when administered alone, it markedly potentiated the apoptotic effect of C6-Cer. These results provide evidence that activation of GluCer synthesis is an important mechanism through which CHP-100 cells attempt to escape ceramide-induced apoptosis.  相似文献   

12.
Liour SS  Yu RK 《Neurochemical research》2002,27(11):1507-1512
Gangliosides have been implicated in having important roles in neural development. It has been shown that disruption of ganglioside biosynthesis inhibits neurite outgrowth. However, many contradictory results have been reported. The inconsistency of these reports may result from the differential use of neuronal cell lines and inhibitors for ganglioside biosynthesis. In order to clarify the inconsistency in these studies, we utilized an in vitro neuronal differentiation model using an embryonic caricinoma (EC) stem cell line to elucidate the relationship between ganglioside expression and neural development. These cells were exposed to three different inhibitors of glucosylceramide synthase, the first enzyme committed for the biosynthesis of most of the brain gangliosides. All three inhibitors, d-threo-1-phenyl-2-decanoylamino-3-morphlino-1-propanol (D-PDMP), d-threo-1-phenyl-2-palmitoylamino-3-pyrrolidino-1-propanol (D-PPPP), and N-butydeoxynojirimycin (NB-DNJ) can inhibit greater than 90% of ganglioside biosynthesis at certain concentrations, respectively. D-PDMP significantly slowed down cellular proliferation in undifferentiated P19 EC cells, inhibited neurite outgrowth, and eventually caused cell death in differentiated cells. However, no retardation in cell growth, neuronal differentiation, and neurite outgrowth was observed in cultures treated with D-PPPP or NB-DNJ despite the depletion of gangliosides. These results indicate that the effect of D-PDMP on cellular proliferation, neurite outgrowth, and survival of differentiated cells is independent of the inhibition of ganglioside biosynthesis.  相似文献   

13.
The small GTPase ADP ribosylation factor 6 (ARF6) mediates endocytosis and has in addition been shown to regulate neuron differentiation. Here we investigated whether ARF6 promotes differentiation of Neuro-2a neuronal cells by modifying the cellular lipid composition. We showed that knockdown of ARF6 by siRNA in Neuro-2a cells increased neuronal outgrowth as expected. ARF6 knockdown also resulted in increased glucosylceramide levels and decreased sphingomyelin levels, but did not affect the levels of ceramide or phospholipids. We speculated that the ARF6 knockdown-induced increase in glucosylceramide was caused by an effect on glucosylceramide synthase and, in agreement, showed that ARF6 knockdown increased the mRNA levels and activity of glucosylceramide synthase. Finally, we showed that incubation of Neuro-2a cells with the glucosylceramide synthase inhibitor D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP) normalized the increased neuronal outgrowth induced by ARF6 knockdown. Our results thus show that ARF6 regulates neuronal differentiation through an effect on glucosylceramide synthase and glucosylceramide levels.  相似文献   

14.
Abstract: The axonal outgrowth of cells of Neuro2a, a mouse neuroblastoma cell line, was suppressed on expression of the β-galactoside α1,2-fucosyltransferase (α1,2-FT) gene. We recently cloned two types of rabbit α1,2-FT, RFT-I and RFT-II. RFT-I exhibits comparable kinetic properties and structural homology with human H gene α1,2-FT, and RFT-II shows comparable kinetic parameters with human Se gene α1,2-FT. Neuro2a cells expressing RFT-I (N2A-RFT-I) contained a large amount of fucosyl GM1 instead of GM1 and GD1a, major gangliosides in the parent Neuro2a cells, whereas Neuro2a cells expressing RFT-II (N2A-RFT-II) showed a subtle change in the ganglioside pattern. N2A-RFT-II and parent Neuro2a cells showed axonal outgrowth in serum-free medium on the exogenous addition of GM1, whereas N2A-RFT-I cells exhibited multiple neurite sprouts but not axonal outgrowth. This phenotype was fully recovered by N2A-RFT-I cells on the addition of d - threo -1-phenyl-2-decanoylamino-3-morpholino-1-propanol and α- l -fucosidase to the culture medium, which resulted in pronounced reduction of fucosyl GM1 expression. These results suggested that expression of H-type α1,2-FT, and subsequent incorporation of fucose into glycolipids and glycoproteins, especially the formation of fucosyl GM1, modifies the response of neuronal cells to stimuli that induce axonal extension.  相似文献   

15.
The interaction of enveloped viruses with cell surface receptors is the first step in the viral cycle and an important determinant of viral host range. Although it is established that the paramyxovirus Newcastle Disease Virus binds to sialic acid-containing glycoconjugates the exact nature of the receptors has not yet been determined. Accordingly, here we attempted to characterize the cellular receptors for Newcastle disease virus. Treatment of cells with tunicamycin, an inhibitor of protein N-glycosylation, blocked fusion and infectivity, while the inhibitor of O-glycosylation benzyl-N-acetyl-alpha-D-galactosamide had no effect. Additionally, the inhibitor of glycolipid biosynthesis 1-phenyl-2-hexadecanoylamino-3-morpholino-1-propanol blocked viral fusion and infectivity. These results suggest that N-linked glycoproteins and glycolipids would be involved in viral entry but not O-linked glycoproteins. The ganglioside content of COS-7 cells was analyzed showing that GD1a was the major ganglioside component; the presence of GM1, GM2 and GM3 was also established. In a thin-layer chromatographic binding assay, we analyzed the binding of the virus to different gangliosides, detecting the interaction with monosialogangliosides such as GM3, GM2 and GM1; disialogangliosides such as GD1a and GD1b, and trisialogangliosides such as GT1b. Unlike with other viruses, our results seem to point to the absence of a specific pattern of gangliosides that interact with Newcastle disease virus. In conclusion, our results suggest that Newcastle disease virus requires different sialic acid-containing compounds, gangliosides and glycoproteins for entry into the target cell. We propose that gangliosides would act as primary receptors while N-linked glycoproteins would function as the second receptor critical for viral entry.  相似文献   

16.
Four-transmembrane-domain proteins of the tetraspanin superfamily are the organizers of specific microdomains at the membrane [TERMs (tetraspanin-enriched microdomains)] that incorporate various transmembrane receptors and modulate their activities. The structural aspects of the organization of TERM are poorly understood. In the present study, we investigated the role of gangliosides in the assembly and stability of TERM. We demonstrated that inhibition of the glycosphingolipid biosynthetic pathway with specific inhibitors of glucosylceramide synthase [NB-DGJ (N-butyldeoxygalactonojirimycin) and PPMP (D-threo-1-phenyl-2-hexadecanoylamino-3-morpholino-1-propanol.HCl)] resulted in specific weakening of the interactions involving tetraspanin CD82. Furthermore, ectopic expression of the plasma-membrane-bound sialidase Neu3 in mammary epithelial cells also affected stability of the complexes containing CD82: its association with tetraspanin CD151 was decreased, but the association with EGFR [EGF (epidermal growth factor) receptor] was enhanced. The destabilization of the CD82-containing complexes upon ganglioside depletion correlated with the re-distribution of the proteins within plasma membrane. Importantly, depletion of gangliosides affected EGF-induced signalling only in the presence of CD82. Taken together, our results provide strong evidence that gangliosides play an important role in supporting the integrity of CD82-enriched microdomains. Furthermore, these results demonstrate that the association between different tetraspanins in TERM is controlled by distinct mechanisms and identify Neu3 as a first physiological regulator of the integrity of these microdomains.  相似文献   

17.
Several studies have shown that ceramide (CER) glucosylation contributes to drug resistance in multidrug-resistant cells and that inhibition of glucosylceramide synthase sensitizes cells to various drug treatments. However, the role of glucosylceramide synthase has not been studied in drug-sensitive cancer cells. We have demonstrated previously that the anthracycline daunorubicin (DNR) rapidly induces interphasic apoptosis through neutral sphingomyelinase-mediated CER generation in human leukemic cell lines. We now report that inhibition of glucosylceramide synthase using d,l-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) or 1-phenyl-2-palmitoylamino-3-morpholino-1-propanol (PPMP) protected U937 and HL-60 cells from DNR-induced apoptosis. Moreover, blocking CER glucosylation did not lead to increased CER levels but to increased CER galactosylation. We also observed that pretreating cells with galactosylceramide (GalCER) significantly inhibited DNR-induced apoptosis. Finally, we show that GalCER-enriched lymphoblast cells (Krabbe's disease) were significantly more resistant to DNR- and cytosine arabinoside-induced apoptosis as compared with normal lymphoblasts, whereas glucosylceramide-enriched cells (Gaucher's disease) were more sensitive. In conclusion, this study suggests that sphingomyelin-derived CER in itself is not a second messenger but rather a precursor of both an apoptosis second messenger (GD3) and an apoptosis "protector" (GalCER).  相似文献   

18.
Glycolipids were depleted from the membranes of human A431 cells using 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), an inhibitor of glucosylceramide synthetase. After 6 days of culture in the presence of 5 microM D-threo-PDMP, glycolipid content was reduced to approximately 5% of control levels. By contrast, synthesis per cell of phosphatidylcholine, sphingomyelin, triglycerides, and glycoprotein was relatively unchanged in PDMP-treated cells. In parallel with glycolipid depletion, PDMP-treated cells exhibited a rapid loss of epithelial cell morphology, a reduced rate of cell growth, and inhibition of cell-substrate adhesion. The effects of D-threo-PDMP on cell morphology and substrate adhesion were blocked by exogenous GM3 addition and were not observed with L-threo-PDMP (a relatively inactive enantiomer). Fluorescence photobleaching and recovery (FPR) was used to investigate the hypothesis that glycolipids influence cell behavior, in part, by changing the diffusion characteristics of membrane proteins and lipids. Diffusion coefficients and mobile fractions of two integral membrane proteins, the EGF receptor and a class I MHC antigen, did not differ significantly between control and PDMP-treated cells. Diffusion coefficients of lipid probes, NBD-PC and fluorescent GM1 ganglioside, were similarly unaffected by glycolipid depletion. However, lipid probes did show a significant increase in mobile fraction (the fraction of lipids that are free to diffuse) in PDMP-treated cells. This increase was blocked by culturing cells in the presence of exogenous GM3 ganglioside. The results suggest that glycolipids play a role in the formation of lipid domains in A431 cell membranes. Glycolipid-mediated changes in membrane lipid organization may influence receptor activation and transmembrane signaling, leading to changes in cell growth, morphology, and adhesion.  相似文献   

19.
Neuronal and glial cells in the central nervous system are generated from common neural precursor cells during development. To evaluate the functions of glycosphingolipids (GSLs) in neural precursor cells, neuroepithelial cells (NECs) were prepared from mouse embryos (E14.5), and the effects of an inhibitor of glucosylceramide synthesis, D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), on NECs was investigated. In PDMP-treated NECs, the expression of GD3, a major ganglioside of NECs, disappeared. We found that basic fibroblast growth factor (bFGF)-induced proliferation and extracellular signal-regulated kinase (ERK) activation were repressed in PDMP-treated NECs. Leukemia inhibitory factor (LIF)-induced ERK activation was also abolished in PDMP-treated NECs, suggesting that PDMP specifically represses the Ras-MAPK pathway. bFGF-induced activation of the Ras-MAPK pathway in NECs is dependent on GSL-enriched microdomains, lipid rafts. The organization of lipid rafts and the distribution of Ras and Grb2-SOS in the microdomains were not affected. However, Ras activation was repressed in PDMP-treated NECs. In PDMP-treated NECs, some neuronal genes were up-regulated and glial genes were down-regulated. These results suggest that GSLs might be involved in the proliferation, survival, signal transduction and differentiation of NECs.  相似文献   

20.
The sphingolipid ceramide is involved in the cellular stress response. Here we demonstrate that ceramide controls macroautophagy, a major lysosomal catabolic pathway. Exogenous C(2)-ceramide stimulates macroautophagy (proteolysis and accumulation of autophagic vacuoles) in the human colon cancer HT-29 cells by increasing the endogenous pool of long chain ceramides as demonstrated by the use of the ceramide synthase inhibitor fumonisin B(1). Ceramide reverted the interleukin 13-dependent inhibition of macroautophagy by interfering with the activation of protein kinase B. In addition, C(2)-ceramide stimulated the expression of the autophagy gene product beclin 1. Ceramide is also the mediator of the tamoxifen-dependent accumulation of autophagic vacuoles in the human breast cancer MCF-7 cells. Monodansylcadaverine staining and electron microscopy showed that this accumulation was abrogated by myriocin, an inhibitor of de novo synthesis ceramide. The tamoxifen-dependent accumulation of vacuoles was mimicked by 1-phenyl-2-decanoylamino-3-morpholino-1-propanol, an inhibitor of glucosylceramide synthase. 1-Phenyl-2-decanoylamino-3-morpholino-1-propanol, tamoxifen, and C(2)-ceramide stimulated the expression of beclin 1, whereas myriocin antagonized the tamoxifen-dependent up-regulation. Tamoxifen and C(2)-ceramide interfere with the activation of protein kinase B, whereas myriocin relieved the inhibitory effect of tamoxifen. In conclusion, the control of macroautophagy by ceramide provides a novel function for this lipid mediator in a cell process with major biological outcomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号