首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tagatose-1,6-bisphosphate aldolase from Streptococcus pyogenes is a class I aldolase that exhibits a remarkable lack of chiral discrimination with respect to the configuration of hydroxyl groups at both C3 and C4 positions. The enzyme catalyzes the reversible cleavage of four diastereoisomers (fructose 1,6-bisphosphate (FBP), psicose 1,6-bisphosphate, sorbose 1,6-bisphosphate, and tagatose 1,6-bisphosphate) to dihydroxyacetone phosphate (DHAP) and d-glyceraldehyde 3-phosphate with high catalytic efficiency. To investigate its enzymatic mechanism, high resolution crystal structures were determined of both native enzyme and native enzyme in complex with dihydroxyacetone-P. The electron density map revealed a (α/β)8 fold in each dimeric subunit. Flash-cooled crystals of native enzyme soaked with dihydroxyacetone phosphate trapped a covalent intermediate with carbanionic character at Lys205, different from the enamine mesomer bound in stereospecific class I FBP aldolase. Structural analysis indicates extensive active site conservation with respect to class I FBP aldolases, including conserved conformational responses to DHAP binding and conserved stereospecific proton transfer at the DHAP C3 carbon mediated by a proximal water molecule. Exchange reactions with tritiated water and tritium-labeled DHAP at C3 hydrogen were carried out in both solution and crystalline state to assess stereochemical control at C3. The kinetic studies show labeling at both pro-R and pro-S C3 positions of DHAP yet detritiation only at the C3 pro-S-labeled position. Detritiation of the C3 pro-R label was not detected and is consistent with preferential cis-trans isomerism about the C2–C3 bond in the carbanion as the mechanism responsible for C3 epimerization in tagatose-1,6-bisphosphate aldolase.  相似文献   

2.
A thiol group present in rabbit liver fructose-1,6-bisphosphatase is capable of reacting rapidly with N-ethylmaleimide (NEM) with a stoichiometry of one per monomer. Either fructose 1,6-bisphosphate or fructose 2,6-bisphosphate at 500 microM protected against the loss of fructose 2,6-bisphosphate inhibition potential when fructose-1,6-bisphosphatase was treated with NEM in the presence of AMP for up to 20 min. Fructose 2,6-bisphosphate proved more effective than fructose 1,6-bisphosphate when fructose-1,6-bisphosphatase was treated with NEM for 90-120 min. The NEM-modified enzyme exhibited a significant loss of catalytic activity. Fructose 2,6-bisphosphate was more effective than the substrate in protecting against the thiol group modification when the ligands are present with the enzyme and NEM. 100 microM fructose 2,6-bisphosphate, a level that should almost saturate the inhibitory binding site of the enzyme under our experimental conditions, affords only partial protection against the loss of activity of the enzyme caused by the NEM modification. In addition, the inhibition pattern for fructose 2,6-bisphosphate of the NEM-derivatized enzyme was found to be linear competitive, identical to the type of inhibition observed with the native enzyme. The KD for the modified enzyme was significantly greater than that of untreated fructose-1,6-bisphosphatase. Examination of space-filling models of the two bisphosphates suggest that they are very similar in conformation. On the basis of these observations, we suggest that fructose 1,6-bisphosphate and fructose 2,6-bisphosphate occupy overlapping sites within the active site domain of fructose-1,6-bisphosphatase. Fructose 2,6-bisphosphate affords better shielding against thiol-NEM modification than fructose 1,6-bisphosphate; however, the difference between the two ligands is quantitative rather than qualitative.  相似文献   

3.
  • 1.1. Purified ostrich (Struthio camelus) liver fructose-1,6-bisphosphatase exhibited an absolute requirement for Mg2+.
  • 2.2. The enzyme catalyzed the hydrolysis of fructose-1,6-bisphosphate, sedoheptulose-l,7-bisphosphate and ribulose-l,5-bisphosphate.
  • 3.3. S0.5 for substrate was 1.4 μM.
  • 4.4. AMP was a potent non-competitive inhibitor with respect to substrate (Ki of 25 μM).
  • 5.5. Fructose-2,6-bisphosphate was a potent competitive inhibitor of the enzyme (Ki of 4.8 μM).
  相似文献   

4.
Inorganic pyrophosphate: D-fructose-6-phosphate 1-phosphotransferase was detected in extracts of mung bean sprouts, the first such detection in C3 plants. The enzyme had an absolute requirement for a divalent metal (Mg++) as well as for D-fructose 6-phosphate and inorganic pyrophosphate. An examination of anomalous kinetics revealed that the enzyme was activated by a product of the reaction, D-fructose 1,6-bisphosphate; micromolar concentrations of this effector increased the activity of the enzyme about 20-fold. D-Glucose 1,6-bisphosphate at higher concentrations could substitute for D-fructose 1,6-bisphosphate as an activator, but not as a substrate in the reverse reaction. The enzyme was fully active under conditions wherein ATP: D-fructose-6-phosphate 1-phosphotransferase from the same source was inhibited >99% (e.g., in the presence of 10 μM phosphoenolpyruvate).  相似文献   

5.
The inhibition of rabbit liver fructose 1,6-bisphosphatase (EC 3.1.3.11) by fructose 2,6-bisphosphate (Fru-2,6-P2) is shown to be competitive with the substrate, fructose 1,6-bisphosphate (Fru-1,6-P2), with Ki for Fru-2,6-P2 of approximately 0.5 μm. Binding of Fru-2,6-P2 to the catalytic site is confirmed by the fact that it protects this site against modification by pyridoxal phosphate. Inhibition by Fru-2,6-P2 is enhanced in the presence of a noninhibitory concentration (5 μm) of the allosteric inhibitor AMP and decreased by modification of the enzyme by limited proteolysis with subtilisin. Fru-2,6-P2, unlike the substrate Fru-1,6-P2, protects the enzyme against proteolysis by subtilisin or lysosomal proteinases.  相似文献   

6.
Fluorimetric studies of the binding of d-ribulose 1,5-bisphosphate (RuP2) and the effectors 6-phosphogluconate and fructose 1,6-bisphosphate to the d-ribulose 1,5-bisphosphate carboxylase/oxygenase from spinach were correlated with the functions of these sugar phosphates in the carboxylation reaction. These agents compete for two binding sites of the enzyme. At relatively low concentrations they bind to an allosteric site, where 6-phosphogluconate and fructose 1,6-bisphosphate display their stimulating effect on the fixation of CO2. At higher concentrations these compounds inhibit the carboxylation reaction and compete with RuP2 for the reaction center of the carboxylase. Preincubation of the enzyme with low concentrations of RuP2 (0.1–5 μm) inhibits the activity of these effectors as well as the effector-induced fluorescence changes of the enzyme-2-p-toluidinonapthalene-6-sulfonate (TNS) complex by competition for the regulatory center which could be identified as the high affinity binding site of the enzyme for RuP2 with a KD = 0.6 μm. The deactivation of the carboxylase which is observed on preincubation of the enzyme with RuP2 in the absence of bicarbonate and Mg2+ cannot be correlated to the binding of RuP2 to the effector site. The deactivation process occurs in an RuP2 concentration range similar to that for CO2 fixation.  相似文献   

7.
Fructose 2,6-bisphosphate, a potent inhibitor of fructose-1,6-bisphosphatases, was found to be an inhibitor of the Escherichia coli enzyme. The substrate saturation curves in the presence of inhibitor were sigmoidal and the inhibition was much stronger at low than at high substrate concentrations. At a substrate concentration of 20 μM, 50% inhibition was observed at 4.8 μM fructose 2,6-bisphosphate. Escherichia coli fructose-1,6-bisphosphatase was inhibited by AMP (Kj = 16 μM) and phosphoenolpyruvate caused release of AMP inhibition. However, neither AMP inhibition nor its release by phosphoenolpyruvate was affected by the presence of fructose 2,6-bisphosphate. The results obtained, together with previous observations, provide further evidence for the fructose 2,6-bisphosphate-fructose-1,6-bisphosphatase active site interaction.  相似文献   

8.
Alkanediol monoglycolate bisphosphoric esters (P-O-CH2-CO-O-(CH2)n-O-P), which are analogues of the aldolase (D-fructose-1,6-bisphosphate D-glyceraldehyde-3-phosphate-lyase, EC 4.1.2.13) substrate fructose 1,6-bisphosphate, were synthesized and used for probing its active site. The Ki value was lowest when the maximum distance between the phosphorus atoms of the bisphosphate was brought close to that of fructose 1,6-bisphosphate. The binding constants estimated from difference spectra correlate well with Ki values for the substrate analogues. Propanediol monoglycolate bisphosphoric ester protected aldolase from inactivation by 1,2-cyclohexanedione, which preferentially attacks arginine-55. However, propanol phosphate had little protective effect. The synthesized phosphate compounds protected the enzyme against inactivation by trypsin, and also against spontaneous denaturation. These results suggest that the synthesized phosphate compounds bind to aldolase at the active site, which tends to keep the distance constant between the two phosphate-binding sites for the open-chain form of fructose 1,6-bisphosphate, and stabilize the natural conformation of the enzyme. Both arginine-55 and lysine-146 are shown to participate in the phosphate-binding site for the C-1-phosphate of fructose 1,6-bisphosphate.  相似文献   

9.
Some kinetic studies of the interactions between Escherichia coli phosphoenolpyruvate carboxylase (orthophosphate:oxaloacetate carboxylase (phosphorylating) EC 4.1.1.31) acetyl coenzyme A, fructose 1,6-bisphosphate, and aspartate were performed. Activation of the enzyme by fructose 1,6-bisphosphate is anomalous by comparison with acetyl coenzyme A in that it confers hysteretic properties on the enzyme. In the presence of both activators and aspartate, hysteresis is observed also, but the approach to optimum catalytic activity can be fit to an equation for a second-order reaction with respect to enzyme concentration. Since, however, hysteresis is not a result of any apparent association-dissociation reaction, the apparent fit to a second-order kinetic equation is probably not real but is the result of a multistep activation mechanism. Hysteresis is not eliminated by preincubation of the enzyme with fructose 1,6-bisphosphate, acetyl coenzyme A, or phosphoenolpyruvate singly or in any pair of combinations. Hysteresis is associated, therefore, with the slow conformation change from the inactive species to the active species under the influence of all three of those reactants. The enzyme complex resulting from the binding of each activator, including phosphoenolpyruvate, has an increased affinity for the other activators. A kinetic method for estimating the relative changes in affinity of these complexes for some of the other reactants is presented. At concentrations of the activators below their Ka, synergistic effects are evident, particularly in their ability to relieve aspartate inhibition. Aspartate inhibition is competitive with acetyl coenzyme A both in the absence and in the presence of low concentrations of fructose 1,6-bisphosphate. Increasing the concentrations of fructose 1,6-bisphosphate results in an increase in the apparent Kl for aspartate, suggesting that synergistic activation by fructose 1,6-bisphosphate is a result of the increased affinity of the fructose 1,6-bisphosphate-enzyme complex for acetyl coenzyme A, and a shift in the concentration of enzyme species away from the one(s) to which aspartate can bind most easily. In the presence of fructose 1,6-bisphosphate alone optimal activation can be achieved, but the concentrations required in vitro are high and suggest that fructose 1,6-bisphosphate alone does not function in that capacity physiologically, but primes the enzyme for more effective activation by acetyl coenzyme A and/or phosphoenolpyruvate.  相似文献   

10.
Modification of a highly reactive cysteine residue of pig kidney fructose 1,6-bisphosphatase with N-ethylmaleimide results in the loss of activation of the enzyme by monovalent cations. Low concentrations of fructose 2,6-bisphosphate or high (inhibitory) levels of fructose 1,6-bisphosphate protect the enzyme against the loss of monovalent cation activation, while non-inhibitory concentrations of the substrate gave partial protection. The allosteric inhibitor AMP markedly increases the reactivity of the cysteine residue. The results indicate that fructose 2,6-bisphosphate can protect the enzyme against the loss of potassium activation by binding to an allosteric site. High levels of fructose 1,6-bisphosphate probably inhibit the enzyme by binding to this allosteric site.  相似文献   

11.
Branching enzyme (EC 2.4.1.18; glycogen branching enzyme; GBE) catalyzes the formation of α1,6-branching points in glycogen. Until recently it was believed that all GBEs belong to glycoside hydrolase family 13 (GH13). Here we describe the cloning and expression of the Thermus thermophilus family GH57-type GBE and report its biochemical properties and crystal structure at 1.35-Å resolution. The enzyme has a central (β/α)7-fold catalytic domain A with an inserted domain B between β2 and α5 and an α-helix-rich C-terminal domain, which is shown to be essential for substrate binding and catalysis. A maltotriose was modeled in the active site of the enzyme which suggests that there is insufficient space for simultaneously binding of donor and acceptor substrates, and that the donor substrate must be cleaved before acceptor substrate can bind. The biochemical assessment showed that the GH57 GBE possesses about 4% hydrolytic activity with amylose and in vitro forms a glucan product with a novel fine structure, demonstrating that the GH57 GBE is clearly different from the GH13 GBEs characterized to date.  相似文献   

12.
The catalytic activity of L-aspartate α-decarboxylase (ADC) is essential for the growth of several micro-organisms, including Mycobacterium tuberculosis (Mtb), and has triggered efforts for the development of pharmaceutically active compounds against tuberculosis. The present study is a continuation of our recent chemoinformatics-based design approach for identifying potential drug-like inhibitors against MtbADC. We report an NMR-based protocol that allows label-free and direct monitoring of enzymatic conversion, which we have combined with a systematic testing of reported and newly identified potential inhibitors against MtbADC. Quantification of enzymatic conversion in the absence and presence of inhibitors allowed for a relative measure of the inhibitory effect (k rel). Among the newly identified compounds, D-tartrate, L-tartrate, and 2,4-dihydroxypyrimidine-5-carboxylate were found to inhibit the enzyme with k rel values of 0.36, 0.38, and 0.54, respectively. In addition to the identification of potential building blocks for the development of therapeutic agents, the current study highlights the importance of electrostatic interactions governing enzyme-inhibitor binding.  相似文献   

13.
D.W. Meek  H.G. Nimmo   《FEBS letters》1983,160(1-2):105-109
Rat liver fructose 1,6-bisphosphatase can be protected against partial inactivation by N-ethylmaleimide by low concentrations of fructose 2,6-bisphosphate or high concentrations of fructose 1,6-bisphosphate. The partially inactivated enzyme has a much reduced sensitivity to high substrate inhibition and has lost the sigmoid component of the inhibition by fructose 2,6-bisphosphate; this compound is a simple linear competitive inhibitor of the modified enzyme. The results suggest that fructose 2,6-bisphosphate can bind to the enzyme at two distinct sites, the catalytic site and an allosteric site. High levels of fructose 1,6-bisphosphate probably inhibit by binding to the allosteric site.  相似文献   

14.
Fructose-1,6-bisphosphate activates ADP-glucose pyrophosphorylase and the synthesis of glycogen in Escherichia coli. Here, we show that although pyruvate is a weak activator by itself, it synergically enhances the fructose-1,6-bisphosphate activation. They increase the enzyme affinity for each other, and the combination increases V max, substrate apparent affinity, and decreases AMP inhibition. Our results indicate that there are two distinct interacting allosteric sites for activation. Hence, pyruvate modulates E. coli glycogen metabolism by orchestrating a functional network of allosteric regulators. We postulate that this novel dual activator mechanism increases the evolvability of ADP-glucose pyrophosphorylase and its related metabolic control.  相似文献   

15.
The measurement of the time dependency of the activity of rat liver fructose 1,6-bisphosphatase shows that the enzyme under certain conditions exhibits kinetic hysteretics. After addition of the substrate, the enzyme is initially in a state characterized by a “high” Km of about 2 μm. During the reaction the enzyme is converted in a slow process to a low Km form (Km is about 0.5 μm). The transition is accompanied by a decrease in V. It is concluded that the hysteretic behavior is caused by binding of the Zn2+ substrate complex to the enzyme. The earlier reported effect of glucagon treatment on the activity of fructose 1,6-bisphosphate (O. D. Taunton, F. B. Stifel, H. L. Greene, and R. H. Herman (1974) J. Biol. Chem.249, 7228–7239) was reinvestigated, taking into account the hysteretic behavior. Under conditions where the pyruvate kinase activity is decreased by glucagon injection, no activity change of fructose 1,6-bisphosphatase is observed. It can be suggested that for studies concerning the effects of incubation or hormone treatment on fructose 1,6-bisphosphatase, the complex kinetics of the rat liver enzyme has to be taken into account.  相似文献   

16.
The aim of this paper is to study some steady-state kinetic properties of sedoheptulose-1,7-bisphosphatase, its pH-dependence and the effect of a substrate analogue, fructose 2,6-bisphosphate. Studies were carried out with sedoheptulose 1,7-bisphosphate and with fructose 1,6-bisphosphate, an alternative substrate. The pK values are identical for both substrates, and fructose 2,6-bisphosphate behaves like a competitive inhibitor. These results suggest that there exists a unique active site for either sedoheptulose 1,7-bisphosphate or fructose 1,6-bisphosphate on the enzyme molecule. Increasing Mg2+ concentrations shifted the optimum pH. As for fructose-1,6-bisphosphatase, we believe that this shift is due to the neutralization of negative charges near the active centre [Cadet, Meunier & Ferté (1987) Eur. J. Biochem. 162, 393-398]. The free species of sedoheptulose 1,7-bisphosphate and fructose 1,6-bisphosphate are not the usual substrates of enzyme, nor is Mg2+. But the kinetics relative to the (Mg2+-substrate4-)2- complex is not consistent with this complex being the substrate. An explanation of this discrepancy is proposed, involving both the negative charges near the active centre and the positive charges of Mg2+. The observed Vmax. of the reduced enzyme is 65% of the theoretical Vmax. for both substrates, but the observed Vmax. relative to sedoheptulose 1,7-bisphosphate is 3 times the one relative to fructose 1,6-bisphosphate. The specificity constant (kcat./Km), 1.62 x 10(6) M-1.s-1 with respect to sedoheptulose 1,7-bisphosphate compared with 5.5 x 10(4) M-1.s-1 with respect to fructose 1,6-bisphosphate, indicates that the enzyme specificity towards sedoheptulose 1,7-bisphosphate is high but not absolute.  相似文献   

17.
Substrate analogs xylulose 1,5-bisphosphate, glucitol 1,6-bisphosphate, α-2,5-anhydroglucitol 1,6-bisphosphate, α-, β-methyl fructofuranoside 1,6-bisphosphate, ribulose 1,5-bisphosphate, ribulose 5-phosphate, and ribose 5-phosphate and inactivating agents 1-chloro-2, 4-dinitrobenzene, 4-hydroxymercuribenzoate, and pyridoxal phosphate were examined for their effects on liver aldolase. These studies support the use of the β-anomer and acyclic form as substrate. They also suggest that the liver enzyme active site is similar to the muscle enzyme but with a much weaker 6-phosphate binding site.  相似文献   

18.
The most common glycosylation disorder is caused by mutations in the gene encoding phosphomannomutase2, producing a disease still without a cure. Phosphomannomutase2, a homodimer in which each chain is composed of two domains, requires a bisphosphate sugar (either mannose or glucose) as activator, opening a possible drug design path for therapeutic purposes. The crystal structure of human phosphomannomutase2, however, lacks bound substrate and a key active site loop. To speed up drug discovery, we present here the first structural model of a bisphosphate substrate bound to human phosphomannomutase2. Taking advantage of recent developments in all-atom simulation techniques in combination with limited and site-directed proteolysis, we demonstrated that α-glucose 1,6-bisphosphate can adopt two low energy orientations as required for catalysis. Upon ligand binding, the two domains come close, making the protein more compact, in analogy to the enzyme in the crystals from Leishmania mexicana. Moreover, proteolysis was also carried out on two common mutants, R141H and F119L. It was an unexpected finding that the mutant most frequently found in patients, R141H, although inactive, does bind α-glucose 1,6-bisphosphate and changes conformation.  相似文献   

19.
Two enzymes capable of hydrolyzing fructose-1,6-bisphosphate (FBP) have been isolated from the foliose lichen Peltigera rufescens (Weis) Mudd. These enzymes can be separated using Sephadex G-100 and DEAE Sephacel chromatography. One enzyme has a pH optimum of 6.5, and a substrate affinity of 228 micromolar FBP. This enzyme does not require MgCl2 for activity, and is inhibited by AMP. The second enzyme has a pH optimum of 9.0, with no activity below pH 7.5. This enzyme responds sigmoidally to Mg2+, with half-saturation concentration of 2.0 millimolar MgCl2, and demonstrates hyperbolic kinetics for FBP (Km = 39 micromolar). This enzyme is activated by 20 millimolar dithiothreitol, is inhibited by AMP, but is not affected by fructose-2-6-bisphosphate. It is hypothesized that the latter enzyme is involved in the photosynthetic process, while the former enzyme is a nonspecific acid phosphatase.  相似文献   

20.
Regulation of 2-carboxyarabinitol 1-phosphatase   总被引:4,自引:3,他引:1       下载免费PDF全文
The regulation of 2-carboxyarabinitol 1-phosphatase (CA 1-Pase) by phosphorylated effectors was studied with enzyme purified from tobacco (Nicotiana tabacum) leaves. CA 1-Pase activity was most stimulated by fructose 1,6-bisphosphate, exhibiting an A0.5 value of 1.9 millimolar and a 10-fold enhancement of catalysis. With ribulose-1,5-bisphosphate, the A0.5 was 0.6 millimolar, and maximal stimulation of activity was 5.3-fold. Among the monophosphates, 3-phosphoglycerate and phosphoglycolate were more potent positive effectors than glyceraldehyde 3-phosphate, glucose 1-phosphate, glucose 6-phosphate, and dihydroxyacetone phosphate. Stimulation of CA 1-Pase by ribulose-1,5-bisphosphate and fructose 1,6-bisphosphate increased Vmax but did not appreciably alter Km (2-carboxyarabinitol 1-phosphate) values. Inorganic phosphate appeared to inhibit CA 1-Pase noncompetitively with respect to 2-carboxyarabinitol 1-phosphate, exhibiting a Ki of 0.3 millimolar. The results suggest that these positive and negative effectors bind to a regulatory site on CA 1-Pase and may have a physiologial role in the light regulation of this enzyme. Related experiments with CA 1-Pase inactivated by dialysis in the absence of dithiothreitol show that partial reactivation can be achieved in the presence of a range of reducing reagents, including dithiothreitol, cysteine, and reduced glutathione. This could imply an ancillary involvement of sulfhydryl reduction during light activation of CA 1-Pase in vivo. The enzyme was thermally stable up to 35°C, in contrast to ribulose-1,5-bisphosphate carboxylase/oxygenase activase which lost activity above 30°C. The activation energy for CA 1-Pase was calculated to be 56.14 kilojoules per mole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号