首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
N Kumar  H Cai  C von Mering  M Baudis 《PloS one》2012,7(8):e43689

Background

Regional genomic copy number alterations (CNA) are observed in the vast majority of cancers. Besides specifically targeting well-known, canonical oncogenes, CNAs may also play more subtle roles in terms of modulating genetic potential and broad gene expression patterns of developing tumors. Any significant differences in the overall CNA patterns between different cancer types may thus point towards specific biological mechanisms acting in those cancers. In addition, differences among CNA profiles may prove valuable for cancer classifications beyond existing annotation systems.

Principal Findings

We have analyzed molecular-cytogenetic data from 25579 tumors samples, which were classified into 160 cancer types according to the International Classification of Disease (ICD) coding system. When correcting for differences in the overall CNA frequencies between cancer types, related cancers were often found to cluster together according to similarities in their CNA profiles. Based on a randomization approach, distance measures from the cluster dendrograms were used to identify those specific genomic regions that contributed significantly to this signal. This approach identified 43 non-neutral genomic regions whose propensity for the occurrence of copy number alterations varied with the type of cancer at hand. Only a subset of these identified loci overlapped with previously implied, highly recurrent (hot-spot) cytogenetic imbalance regions.

Conclusions

Thus, for many genomic regions, a simple null-hypothesis of independence between cancer type and relative copy number alteration frequency can be rejected. Since a subset of these regions display relatively low overall CNA frequencies, they may point towards second-tier genomic targets that are adaptively relevant but not necessarily essential for cancer development.  相似文献   

2.
Cancer is perceived as a heterogeneous group of diseases that is characterized by aberrant patterns of gene expression. In the last decade, an increasing amount of data has pointed to a key role for epigenetic alterations in human cancer. In this review, we focus on a subclass of epigenetic regulators, namely histone methyltransferases (HMTs). Several HMTs have been linked to different types of cancer; however, in most cases we only have limited knowledge regarding the molecular mechanisms by which the HMTs contribute to disease development. We summarize the current knowledge regarding some of the best-validated examples of HMTs contributing to tumorigenesis and discuss their potential mechanisms of action.  相似文献   

3.
Breast cancer outcome can be predicted using models derived from gene expression data or clinical data. Only a few studies have created a single prediction model using both gene expression and clinical data. These studies often remain inconclusive regarding an obtained improvement in prediction performance. We rigorously compare three different integration strategies (early, intermediate, and late integration) as well as classifiers employing no integration (only one data type) using five classifiers of varying complexity. We perform our analysis on a set of 295 breast cancer samples, for which gene expression data and an extensive set of clinical parameters are available as well as four breast cancer datasets containing 521 samples that we used as independent validation.mOn the 295 samples, a nearest mean classifier employing a logical OR operation (late integration) on clinical and expression classifiers significantly outperforms all other classifiers. Moreover, regardless of the integration strategy, the nearest mean classifier achieves the best performance. All five classifiers achieve their best performance when integrating clinical and expression data. Repeating the experiments using the 521 samples from the four independent validation datasets also indicated a significant performance improvement when integrating clinical and gene expression data. Whether integration also improves performances on other datasets (e.g. other tumor types) has not been investigated, but seems worthwhile pursuing. Our work suggests that future models for predicting breast cancer outcome should exploit both data types by employing a late OR or intermediate integration strategy based on nearest mean classifiers.  相似文献   

4.
5.
With the proliferation of related microarray studies by independent groups, a natural step in the analysis of these gene expression data is to combine the results across these studies. However, this raises a variety of issues in the analysis of such data. In this article, we discuss the statistical issues of combining data from multiple gene expression studies. This leads to more complications than those in standard meta-analyses, including different experimental platforms, duplicate spots and complex data structures. We illustrate these ideas using data from four prostate cancer profiling studies. In addition, we develop a simple approach for assessing differential expression using the LASSO method. A combination of the results and the pathway databases are then used to generate candidate biological pathways for cancer.  相似文献   

6.
7.
With the tremendous increase of publicly available single-cell RNA-sequencing (scRNA-seq) datasets, bioinformatics methods based on gene co-expression network are becoming efficient tools for analyzing scRNA-seq data, improving cell type prediction accuracy and in turn facilitating biological discovery. However, the current methods are mainly based on overall co-expression correlation and overlook co-expression that exists in only a subset of cells, thus fail to discover certain rare cell types and sensitive to batch effect. Here, we developed independent component analysis-based gene co-expression network inference (ICAnet) that decomposed scRNA-seq data into a series of independent gene expression components and inferred co-expression modules, which improved cell clustering and rare cell-type discovery. ICAnet showed efficient performance for cell clustering and batch integration using scRNA-seq datasets spanning multiple cells/tissues/donors/library types. It works stably on datasets produced by different library construction strategies and with different sequencing depths and cell numbers. We demonstrated the capability of ICAnet to discover rare cell types in multiple independent scRNA-seq datasets from different sources. Importantly, the identified modules activated in acute myeloid leukemia scRNA-seq datasets have the potential to serve as new diagnostic markers. Thus, ICAnet is a competitive tool for cell clustering and biological interpretations of single-cell RNA-seq data analysis.  相似文献   

8.

Background

Genomic instability in cancer leads to abnormal genome copy number alterations (CNA) as a mechanism underlying tumorigenesis. Using microarrays and other technologies, tumor CNA are detected by comparing tumor sample CN to normal reference sample CN. While advances in microarray technology have improved detection of copy number alterations, the increase in the number of measured signals, noise from array probes, variations in signal-to-noise ratio across batches and disparity across laboratories leads to significant limitations for the accurate identification of CNA regions when comparing tumor and normal samples.

Methods

To address these limitations, we designed a novel "Virtual Normal" algorithm (VN), which allowed for construction of an unbiased reference signal directly from test samples within an experiment using any publicly available normal reference set as a baseline thus eliminating the need for an in-lab normal reference set.

Results

The algorithm was tested using an optimal, paired tumor/normal data set as well as previously uncharacterized pediatric malignant gliomas for which a normal reference set was not available. Using Affymetrix 250K Sty microarrays, we demonstrated improved signal-to-noise ratio and detected significant copy number alterations using the VN algorithm that were validated by independent PCR analysis of the target CNA regions.

Conclusions

We developed and validated an algorithm to provide a virtual normal reference signal directly from tumor samples and minimize noise in the derivation of the raw CN signal. The algorithm reduces the variability of assays performed across different reagent and array batches, methods of sample preservation, multiple personnel, and among different laboratories. This approach may be valuable when matched normal samples are unavailable or the paired normal specimens have been subjected to variations in methods of preservation.  相似文献   

9.
10.
With the growing surge of biological measurements, the problem of integrating and analyzing different types of genomic measurements has become an immediate challenge for elucidating events at the molecular level. In order to address the problem of integrating different data types, we present a framework that locates variation patterns in two biological inputs based on the generalized singular value decomposition (GSVD). In this work, we jointly examine gene expression and copy number data and iteratively project the data on different decomposition directions defined by the projection angle /spl theta/ in the GSVD. With the proper choice of /spl theta/, we locate similar and dissimilar patterns of variation between both data types. We discuss the properties of our algorithm using simulated data and conduct a case study with biologically verified results. Ultimately, we demonstrate the efficacy of our method on two genome-wide breast cancer studies to identify genes with large variation in expression and copy number across numerous cell line and tumor samples. Our method identifies genes that are statistically significant in both input measurements. The proposed method is useful for a wide variety of joint copy number and expression-based studies. Supplementary information is available online, including software implementations and experimental data.  相似文献   

11.
Li X  Rao S  Wang Y  Gong B 《Nucleic acids research》2004,32(9):2685-2694
Current applications of microarrays focus on precise classification or discovery of biological types, for example tumor versus normal phenotypes in cancer research. Several challenging scientific tasks in the post-genomic epoch, like hunting for the genes underlying complex diseases from genome-wide gene expression profiles and thereby building the corresponding gene networks, are largely overlooked because of the lack of an efficient analysis approach. We have thus developed an innovative ensemble decision approach, which can efficiently perform multiple gene mining tasks. An application of this approach to analyze two publicly available data sets (colon data and leukemia data) identified 20 highly significant colon cancer genes and 23 highly significant molecular signatures for refining the acute leukemia phenotype, most of which have been verified either by biological experiments or by alternative analysis approaches. Furthermore, the globally optimal gene subsets identified by the novel approach have so far achieved the highest accuracy for classification of colon cancer tissue types. Establishment of this analysis strategy has offered the promise of advancing microarray technology as a means of deciphering the involved genetic complexities of complex diseases.  相似文献   

12.
13.
Bimodal gene expression (where a gene expression distribution has two maxima) is associated with phenotypic diversity in different biological systems. A critical issue, thus, is the integration of expression and phenotype data to identify genuine associations. Here, we developed tools that allow both: i) the identification of genes with bimodal gene expression and ii) their association with prognosis in cancer patients from The Cancer Genome Atlas (TCGA). Bimodality was observed for 554 genes in expression data from 25 tumor types. Furthermore, 96 of these genes presented different prognosis when patients belonging to the two expression peaks were compared. The software to execute the method and the corresponding documentation are available at the Data access section.  相似文献   

14.
Tumor microenvironmental stresses, such as hypoxia and lactic acidosis, play important roles in tumor progression. Although gene signatures reflecting the influence of these stresses are powerful approaches to link expression with phenotypes, they do not fully reflect the complexity of human cancers. Here, we describe the use of latent factor models to further dissect the stress gene signatures in a breast cancer expression dataset. The genes in these latent factors are coordinately expressed in tumors and depict distinct, interacting components of the biological processes. The genes in several latent factors are highly enriched in chromosomal locations. When these factors are analyzed in independent datasets with gene expression and array CGH data, the expression values of these factors are highly correlated with copy number alterations (CNAs) of the corresponding BAC clones in both the cell lines and tumors. Therefore, variation in the expression of these pathway-associated factors is at least partially caused by variation in gene dosage and CNAs among breast cancers. We have also found the expression of two latent factors without any chromosomal enrichment is highly associated with 12q CNA, likely an instance of “trans”-variations in which CNA leads to the variations in gene expression outside of the CNA region. In addition, we have found that factor 26 (1q CNA) is negatively correlated with HIF-1α protein and hypoxia pathways in breast tumors and cell lines. This agrees with, and for the first time links, known good prognosis associated with both a low hypoxia signature and the presence of CNA in this region. Taken together, these results suggest the possibility that tumor segmental aneuploidy makes significant contributions to variation in the lactic acidosis/hypoxia gene signatures in human cancers and demonstrate that latent factor analysis is a powerful means to uncover such a linkage.  相似文献   

15.
MOTIVATION: Discrimination between two classes such as normal and cancer samples and between two types of cancers based on gene expression profiles is an important problem which has practical implications as well as the potential to further our understanding of gene expression of various cancer cells. Classification or discrimination of more than two groups or classes (multi-class) is also needed. The need for multi-class discrimination methodologies is apparent in many microarray experiments where various cancer types are considered simultaneously. RESULTS: Thus, in this paper we present the extension to the classification methodology proposed earlier Nguyen and Rocke (2002b; Bioinformatics, 18, 39-50) to classify cancer samples from multiple classes. The methodologies proposed in this paper are applied to four gene expression data sets with multiple classes: (a) a hereditary breast cancer data set with (1) BRCA1-mutation, (2) BRCA2-mutation and (3) sporadic breast cancer samples, (b) an acute leukemia data set with (1) acute myeloid leukemia (AML), (2) T-cell acute lymphoblastic leukemia (T-ALL) and (3) B-cell acute lymphoblastic leukemia (B-ALL) samples, (c) a lymphoma data set with (1) diffuse large B-cell lymphoma (DLBCL), (2) B-cell chronic lymphocytic leukemia (BCLL) and (3) follicular lymphoma (FL) samples, and (d) the NCI60 data set with cell lines derived from cancers of various sites of origin. In addition, we evaluated the classification algorithms and examined the variability of the error rates using simulations based on randomization of the real data sets. We note that there are other methods for addressing multi-class prediction recently and our approach is along the line of Nguyen and Rocke (2002b; Bioinformatics, 18, 39-50). CONTACT: dnguyen@stat.tamu.edu; dmrocke@ucdavis.edu  相似文献   

16.
Microarray analysis has been applied to comprehensively reveal the abnormalities of DNA copy number (CN) and gene expression in human cancer research during the last decade. These analyses have individually contributed to identify the genes associated with carcinogenesis, progression, metastasis of tumor cells and poor prognosis of cancer patients. However, it is known that the correlation between profiles of CN and gene expression does not highly correlate. Factors which determine the degree of correlation remain largely unexplained. To investigate one such factor, we performed trend analyses between the lengths of CN segments and corresponding gene expression profiles from microarray data in hepatocellular carcinoma (HCC) and colorectal carcinoma (CRC). Significant correlations were observed in CN gain of HCC and CRC (p<0.05). The trend of the CN loss showed a significant correlation in HCC although there was no correlation between the length of CN loss segments and gene expression in CRC. Our findings suggest that the influence of CN on gene expression highly depends on the length of CN region, especially in the case of CN gain. To the best of our knowledge, this is the first study describing the correlation between lengths of CNA segments and expression profiles of corresponding genes.  相似文献   

17.
18.
Existing studies have demonstrated that dysregulation of microRNAs (miRNAs or miRs) is involved in the initiation and progression of cancer. Many efforts have been devoted to identify microRNAs as potential biomarkers for cancer diagnosis, prognosis and therapeutic targets. With the rapid development of miRNA sequencing technology, a vast amount of miRNA expression data for multiple cancers has been collected. These invaluable data repositories provide new paradigms to explore the relationship between miRNAs and cancer. Thus, there is an urgent need to explore the complex cancer-related miRNA-gene patterns by integrating multi-omics data in a pan-cancer paradigm. In this study, we present a tensor sparse canonical correlation analysis (TSCCA) method for identifying cancer-related miRNA-gene modules across multiple cancers. TSCCA is able to overcome the drawbacks of existing solutions and capture both the cancer-shared and specific miRNA-gene co-expressed modules with better biological interpretations. We comprehensively evaluate the performance of TSCCA using a set of simulated data and matched miRNA/gene expression data across 33 cancer types from the TCGA database. We uncover several dysfunctional miRNA-gene modules with important biological functions and statistical significance. These modules can advance our understanding of miRNA regulatory mechanisms of cancer and provide insights into miRNA-based treatments for cancer.  相似文献   

19.
Mouse gene expression data are complex and voluminous. To maximize the utility of these data, they must be made readily accessible through databases, and those resources need to place the expression data in the larger biological context. Here we describe two community resources that approach these problems in different but complementary ways: BioGPS and the Mouse Gene Expression Database (GXD). BioGPS connects its large and homogeneous microarray gene expression reference data sets via plugins with a heterogeneous collection of external gene centric resources, thus casting a wide but loose net. GXD acquires different types of expression data from many sources and integrates these data tightly with other types of data in the Mouse Genome Informatics (MGI) resource, with a strong emphasis on consistency checks and manual curation. We describe and contrast the “loose” and “tight” data integration strategies employed by BioGPS and GXD, respectively, and discuss the challenges and benefits of data integration. BioGPS is freely available at http://biogps.org. GXD is freely available through the MGI web site (www.informatics.jax.org) or directly at www.informatics.jax.org/expression.shtml.  相似文献   

20.
We propose a novel conditional graphical model—spaceMap—to construct gene regulatory networks from multiple types of high dimensional omic profiles. A motivating application is to characterize the perturbation of DNA copy number alterations(CNAs) on downstream protein levels in tumors. Through a penalized multivariate regression framework, spaceMap jointly models high dimensional protein levels as responses and high dimensional CNAs as predictors. In this setup, spaceMap infers an undirected network among proteins together with a directed network encoding how CNAs perturb the protein network. spaceMap can be applied to learn other types of regulatory relationships from high dimensional molecular profiles, especially those exhibiting hub structures. Simulation studies show spaceMap has greater power in detecting regulatory relationships over competing methods. Additionally, spaceMap includes a network analysis toolkit for biological interpretation of inferred networks. We applies spaceMap to the CNAs, gene expression and proteomics data sets from CPTAC-TCGA breast(n=77) and ovarian(n=174) cancer studies. Each cancer exhibits disruption of ‘ion transmembrane transport' and‘regulation from RNA polymerase Ⅱ promoter' by CNA events unique to each cancer. Moreover, using protein levels as a response yields a more functionally-enriched network than using RNA expressions in both cancer types. The network results also help to pinpoint crucial cancer genes and provide insights on the functional consequences of important CNA in breast and ovarian cancers. The R package spaceMap—including vignettes and documentation—is hosted on https://topherconley.github.io/spacemap.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号