共查询到20条相似文献,搜索用时 15 毫秒
1.
Epigenetic mechanisms, including histone acetylation and DNA methylation, have been widely implicated in hippocampal-dependent learning paradigms. Here, we have examined the role of epigenetic alterations in amygdala-dependent auditory Pavlovian fear conditioning and associated synaptic plasticity in the lateral nucleus of the amygdala (LA) in the rat. Using Western blotting, we first show that auditory fear conditioning is associated with an increase in histone H3 acetylation and DNMT3A expression in the LA, and that training-related alterations in histone acetylation and DNMT3A expression in the LA are downstream of ERK/MAPK signaling. Next, we show that intra-LA infusion of the histone deacetylase (HDAC) inhibitor TSA increases H3 acetylation and enhances fear memory consolidation; that is, long-term memory (LTM) is enhanced, while short-term memory (STM) is unaffected. Conversely, intra-LA infusion of the DNA methyltransferase (DNMT) inhibitor 5-AZA impairs fear memory consolidation. Further, intra-LA infusion of 5-AZA was observed to impair training-related increases in H3 acetylation, and pre-treatment with TSA was observed to rescue the memory consolidation deficit induced by 5-AZA. In our final series of experiments, we show that bath application of either 5-AZA or TSA to amygdala slices results in significant impairment or enhancement, respectively, of long-term potentiation (LTP) at both thalamic and cortical inputs to the LA. Further, the deficit in LTP following treatment with 5-AZA was observed to be rescued at both inputs by co-application of TSA. Collectively, these findings provide strong support that histone acetylation and DNA methylation work in concert to regulate memory consolidation of auditory fear conditioning and associated synaptic plasticity in the LA. 相似文献
2.
3.
Miller et al. (this issue of Neuron) report that deletion of the 3'UTR of alpha-CaMKII mRNA prevents dendritic delivery of the mRNA in transgenic mice and thus local synthesis of alpha-CaMKII protein in dendrites. 3'UTR mutant mice exhibit decreases in alpha-CaMKII protein in postsynaptic densities, and deficits in late phase LTP and in memory consolidation. 相似文献
4.
5.
Local protein translation in dendrites could be a means for delivering synaptic proteins to their sites of action, perhaps in a spatially regulated fashion that could contribute to plasticity. To directly test the functional role of dendritic translation of calcium/calmodulin-dependent protein kinase IIalpha (CaMKIIalpha) in vivo, we mutated the endogenous gene to disrupt the dendritic localization signal in the mRNA. In this mutant mouse, the protein-coding region of CaMKIIalpha is intact, but mRNA is restricted to the soma. Removal of dendritic mRNA produced a dramatic reduction of CaMKIIalpha in postsynaptic densities (PSDs), a reduction in late-phase long-term potentiation (LTP), and impairments in spatial memory, associative fear conditioning, and object recognition memory. These results demonstrate that local translation is important for synaptic delivery of the kinase and that local translation contributes to synaptic and behavioral plasticity. 相似文献
6.
Michiel W. H. Remme Urs Bergmann Denis Alevi Susanne Schreiber Henning Sprekeler Richard Kempter 《PLoS computational biology》2021,17(12)
Systems memory consolidation involves the transfer of memories across brain regions and the transformation of memory content. For example, declarative memories that transiently depend on the hippocampal formation are transformed into long-term memory traces in neocortical networks, and procedural memories are transformed within cortico-striatal networks. These consolidation processes are thought to rely on replay and repetition of recently acquired memories, but the cellular and network mechanisms that mediate the changes of memories are poorly understood. Here, we suggest that systems memory consolidation could arise from Hebbian plasticity in networks with parallel synaptic pathways—two ubiquitous features of neural circuits in the brain. We explore this hypothesis in the context of hippocampus-dependent memories. Using computational models and mathematical analyses, we illustrate how memories are transferred across circuits and discuss why their representations could change. The analyses suggest that Hebbian plasticity mediates consolidation by transferring a linear approximation of a previously acquired memory into a parallel pathway. Our modelling results are further in quantitative agreement with lesion studies in rodents. Moreover, a hierarchical iteration of the mechanism yields power-law forgetting—as observed in psychophysical studies in humans. The predicted circuit mechanism thus bridges spatial scales from single cells to cortical areas and time scales from milliseconds to years. 相似文献
7.
《Neuron》2022,110(8):1416-1431.e13
8.
A role for the PI-3 kinase signaling pathway in fear conditioning and synaptic plasticity in the amygdala 总被引:22,自引:0,他引:22
Western blot analysis of neuronal tissues taken from fear-conditioned rats showed a selective activation of phosphatidylinositol 3-kinase (PI-3 kinase) in the amygdala. PI-3 kinase was also activated in response to long-term potentiation (LTP)-inducing tetanic stimulation. PI-3 kinase inhibitors blocked tetanus-induced LTP as well as PI-3 kinase activation. In parallel, these inhibitors interfered with long-term fear memory while leaving short-term memory intact. Tetanus and forskolin-induced activation of mitogen-activated protein kinase (MAPK) was blocked by PI-3 kinase inhibitors, which also inhibited cAMP response element binding protein (CREB) phosphorylation. These results provide novel evidence of a requirement of PI-3 kinase activation in the amygdala for synaptic plasticity and memory consolidation, and this activation may occur at a point upstream of MAPK activation. 相似文献
9.
10.
The psychostimulant methylphenidate (MPD; also called Ritalin) is a blocker of dopamine and norepi-nephrine transporter. It has been clinically used for treatment of Attention Deficit and Hyperactivity Disorder (ADHD). There have been inconsistent reports regarding the effects of systemically adminis-tered MPD on learning and memory, either in animals or humans. In the present study, we investigated the effect of direct infusion of MPD into the basolateral nucleus of amygdala (BLA) or the anterior cin-gulate cortex (ACC) on conditioned fear memory. Rats were trained on a one-trial step-through inhibi-tory avoidance task. MPD was infused bilaterally into the BLA or the ACC, either at ‘0’ or 6 h post-training. Saline was administered as control. Memory retention was tested 48 h post-training. In-tra-BLA or intra-ACC infusion of MPD ‘0’ h but not 6 h post-training significantly improved 48-h memory retention: the MPD-treated rats had significant longer step-through latency than controls. The present results indicate that action of MPD in the BLA or the ACC produces a beneficial effect on the consoli-dation of inhibitory avoidance memory. 相似文献
11.
杏仁复合体β受体参与条件性恐惧记忆 总被引:2,自引:0,他引:2
杏仁复合体是条件性恐惧记忆形成和储存的关键脑区。杏仁复合体β受体参与条件性恐惧记忆的巩固。β受体激活易化杏仁复合体内突触传递的长时程增强,增强条件性恐惧记忆的巩固;而阻断β受体则抑制杏仁复合体内突触传递的长时程增强,损害条件性恐惧记忆的巩固。 相似文献
12.
Input-specific long-term potentiation (LTP) in afferent inputs to the amygdala serves an essential function in the acquisition of fear memory. Factors underlying input specificity of synaptic modifications implicated in information transfer in fear conditioning pathways remain unclear. Here we show that the strength of naive synapses in two auditory inputs converging on a single neuron in the lateral nucleus of the amygdala (LA) is only modified when a postsynaptic action potential closely follows a synaptic response. The stronger inhibitory drive in thalamic pathway, as compared with cortical input, hampers the induction of LTP at thalamo-amygdala synapses, contributing to the spatial specificity of LTP in convergent inputs. These results indicate that spike timing-dependent synaptic plasticity in afferent projections to the LA is both temporarily and spatially asymmetric, thus providing a mechanism for the conditioned stimulus discrimination during fear behavior. 相似文献
13.
Changes in food availability alter the output of hypothalamic nuclei that underlie energy homeostasis. Here, we asked whether food deprivation impacts the ability of GABA synapses in the dorsomedial hypothalamus (DMH), an important integrator of satiety signals, to undergo activity-dependent changes. GABA synapses in DMH slices from satiated rats exhibit endocannabinoid-mediated long-term depression (LTD(GABA)) in response to high-frequency stimulation of afferents. When CB1Rs are blocked, however, the same stimulation elicits long-term potentiation (LTP(GABA)), which manifests presynaptically and requires heterosynaptic recruitment of NMDARs and nitric oxide (NO). Interestingly, NO signaling is required for eCB-mediated LTD(GABA). Twenty-four hour food deprivation results in a CORT-mediated loss of CB1R signaling and, consequently, GABA synapses only exhibit LTP(GABA). These observations indicate that CB1R signaling promotes LTD(GABA) and gates LTP(GABA). Furthermore, the satiety state of an animal, through regulation of eCB signaling, determines the polarity of activity-dependent plasticity at GABA synapses in the DMH. 相似文献
14.
Huibert D. Mansvelder Marjolijn Mertz Lorna W. Role 《Seminars in cell & developmental biology》2009,20(4):432-440
Nicotine is the principle addictive agent delivered via cigarette smoking. The addictive activity of nicotine is due to potent interactions with nicotinic acetylcholine receptors (nAChRs) on neurons in the reinforcement and reward circuits of the brain. Beyond its addictive actions, nicotine is thought to have positive effects on performance in working memory and short-term attention-related tasks. The brain areas involved in such behaviors are part of an extensive cortico-limbic network that includes relays between prefrontal cortex (PFC) and cingulate cortex (CC), hippocampus, amygdala, ventral tegmental area (VTA) and the nucleus accumbens (nAcc). Nicotine activates a broad array of nAChRs subtypes that can be targeted to pre- as well as peri- and post-synaptic locations in these areas. Thereby, nicotine not only excites different types of neurons, but it also perturbs baseline neuronal communication, alters synaptic properties and modulates synaptic plasticity.In this review we focus on recent findings on nicotinic modulation of cortical circuits and their targets fields, which show that acute and transient activation of nicotinic receptors in cortico-limbic circuits triggers a series of events that affects cognitive performance in a long lasting manner. Understanding how nicotine induces long-term changes in synapses and alters plasticity in the cortico-limbic circuits is essential to determining how these areas interact in decoding fundamental aspects of cognition and reward. 相似文献
15.
To unravel the molecular and cellular bases of learning and memory is one of the most ambitious goals of modern science. The progress of recent years has not only brought us closer to understanding the molecular mechanisms underlying stable, long-lasting changes in synaptic strength, but it has also provided further evidence that these mechanisms are required for memory formation. 相似文献
16.
《Neuron》2021,109(17):2717-2726.e3
17.
Mitogen-activated protein kinases in synaptic plasticity and memory 总被引:38,自引:0,他引:38
Sweatt JD 《Current opinion in neurobiology》2004,14(3):311-317
This review highlights five areas of recent discovery concerning the role of extracellular-signal regulated kinases (ERKs) in the hippocampus. First, ERKs have recently been directly implicated in human learning through studies of a human mental retardation syndrome. Second, new models are being formulated for how ERKs contribute to molecular information processing in dendrites. Third, a role of ERKs in stabilizing structural changes in dendritic spines has been defined. Fourth, a crucial role for ERKs in regulating local dendritic protein synthesis is emerging. Fifth, the importance of ERK interactions with scaffolding and structural proteins at the synapse is increasingly apparent. These topics are discussed within the context of an emerging role for ERKs in a wide variety of forms of synaptic plasticity and memory formation in the behaving animal. 相似文献
18.
The synaptic basis underlying food intake is poorly understood. New research shows that an animal's satiety state dictates the polarity of long-term inhibitory synaptic plasticity in the hypothalamus, which is mediated by an activity-dependent competition between endocannabinoid and nitric oxide signaling. 相似文献
19.
Homeostatic synaptic plasticity remains an enigmatic form of synaptic plasticity. Increasing interest on the topic has fuelled a surge of recent studies that have identified key molecular players and the signaling pathways involved. However, the new findings also highlight our lack of knowledge concerning some of the basic properties of homeostatic synaptic plasticity. In this review we address how homeostatic mechanisms balance synaptic strengths between the presynaptic and the postsynaptic terminals and across synapses that share the same postsynaptic neuron. 相似文献
20.
Mayford M 《Current opinion in neurobiology》2007,17(3):313-317
The relay of extracellular signals into changes in cellular physiology involves a Byzantine array of intracellular signaling pathways, of which cytoplasmic protein kinases are a crucial component. In the nervous system, a great deal of effort has focused on understanding the conversion of patterns of synaptic activity into long-lasting changes in synaptic efficacy that are thought to underlie memory. The goal is both to understand synaptic plasticity mechanisms, such as long-term potentiation, at a molecular level and to understand the relationship of these synaptic mechanisms to behavioral memory. Although both involve the activation of multiple signaling pathways, recent studies are beginning to define discrete roles and mechanisms for individual kinases in the different temporal phases of both synaptic and behavioral plasticity. 相似文献