首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Equine herpesvirus type 1 (EHV-1), a member of the Alphaherpesviridae, displays a broad host range in vitro, allowing for detailed study of the mechanisms of productive infection, including attachment and entry, in various cell culture systems. Previously, we showed that EHV-1 infects Chinese hamster ovary (CHO-K1) cells even though these cells do not express a known alphaherpesvirus entry receptor. In this report, we show by electron microscopy and an infectious recovery assay that entry into CHO-K1 cells occurs via an endocytic or phagocytic mechanism, while entry into equine dermal (ED) or rabbit kidney (RK13) cells occurs by direct fusion at the cell surface. In both cases (endocytic/phagocytic or direct fusion), entry leads to productive infection. Using drugs that inhibit clathrin-dependent or caveola-dependent endocytosis, we showed that EHV-1 entry into CHO-K1 cells does not require clathrin or caveolae. We also show that EHV-1 infection requires the activation of cell signaling molecules. In particular, we demonstrate that activation of the serine/threonine Rho kinase ROCK1 is critical for infection. Inhibition of this kinase by drugs or overexpression of a negative regulator of ROCK1 significantly blocked EHV-1 infection. These results show that EHV-1 can enter disparate cell types by at least two distinct mechanisms and that productive infection is dependent upon the activation of ROCK1.  相似文献   

2.
Equine herpesvirus 1 (EHV-1) is a member of the Alphaherpesvirinae, and its broad tissue tropism suggests that EHV-1 may use multiple receptors to initiate virus entry. EHV-1 entry was thought to occur exclusively through fusion at the plasma membrane, but recently entry via the endocytic/phagocytic pathway was reported for Chinese hamster ovary cells (CHO-K1 cells). Here we show that cellular integrins, and more specifically those recognizing RGD motifs such as αVβ5, are important during the early steps of EHV-1 entry via endocytosis in CHO-K1 cells. Moreover, mutational analysis revealed that an RSD motif in the EHV-1 envelope glycoprotein D (gD) is critical for entry via endocytosis. In addition, we show that EHV-1 enters peripheral blood mononuclear cells predominantly via the endocytic pathway, whereas in equine endothelial cells entry occurs mainly via fusion at the plasma membrane. Taken together, the data in this study provide evidence that EHV-1 entry via endocytosis is triggered by the interaction between cellular integrins and the RSD motif present in gD and, moreover, that EHV-1 uses different cellular entry pathways to infect important target cell populations of its natural host.  相似文献   

3.
Equine herpesvirus type 1 (EHV-1) and EHV-4 are genetically and antigenically very similar, but their pathogenic potentials are strikingly different. The differences in pathogenicity between both viruses seem to be reflected in cellular host range: EHV-1 can readily be propagated in many cell types of multiple species, while EHV-4 entry and replication appear to be restricted mainly to equine cells. The clear difference in cellular tropism may well be associated with differences in the gene products involved in virus entry and/or spread from cell to cell. Here we show that (i) most of the EHV-1 permissive cell lines became resistant to EHV-1 expressing EHV-4 glycoprotein D (gD4) and the opposite was observed for EHV-4 harboring EHV-1 gD (gD1). (ii) The absence of integrins did not inhibit entry into and replication of EHV-1 in CHO-K1 or peripheral blood mononuclear cells (PBMC). Furthermore, integrin-negative K562 cells did not acquire the ability to bind to gD1 when αVβ3 integrin was overexpressed. (iii) PBMC could be infected with similar efficiencies by both EHV-1 and EHV-4 in vitro. (iv) In contrast to results for equine fibroblasts and cells of endothelial or epithelial origin, we were unable to block entry of EHV-1 or EHV-4 into PBMC with antibodies directed against major histocompatibility complex class I (MHC-I), a result that indicates that these viruses utilize a different receptor(s) to infect PBMC. Cumulatively, we provide evidence that efficient EHV-1 and EHV-4 entry is dependent mainly on gD, which can bind to multiple cell surface receptors, and that gD has a defining role with respect to cellular host range of EHV-1 and EHV-4.  相似文献   

4.
5.
Cytotoxic T-lymphocytes play an important role in the protection against viral infections, which they detect through the recognition of virus-derived peptides, presented in the context of MHC class I molecules at the surface of the infected cell. The transporter associated with antigen processing (TAP) plays an essential role in MHC class I-restricted antigen presentation, as TAP imports peptides into the ER, where peptide loading of MHC class I molecules takes place. In this study, the UL 49.5 proteins of the varicelloviruses bovine herpesvirus 1 (BHV-1), pseudorabies virus (PRV), and equine herpesvirus 1 and 4 (EHV-1 and EHV-4) are characterized as members of a novel class of viral immune evasion proteins. These UL 49.5 proteins interfere with MHC class I antigen presentation by blocking the supply of antigenic peptides through inhibition of TAP. BHV-1, PRV, and EHV-1 recombinant viruses lacking UL 49.5 no longer interfere with peptide transport. Combined with the observation that the individually expressed UL 49.5 proteins block TAP as well, these data indicate that UL 49.5 is the viral factor that is both necessary and sufficient to abolish TAP function during productive infection by these viruses. The mechanisms through which the UL 49.5 proteins of BHV-1, PRV, EHV-1, and EHV-4 block TAP exhibit surprising diversity. BHV-1 UL 49.5 targets TAP for proteasomal degradation, whereas EHV-1 and EHV-4 UL 49.5 interfere with the binding of ATP to TAP. In contrast, TAP stability and ATP recruitment are not affected by PRV UL 49.5, although it has the capacity to arrest the peptide transporter in a translocation-incompetent state, a property shared with the BHV-1 and EHV-1 UL 49.5. Taken together, these results classify the UL 49.5 gene products of BHV-1, PRV, EHV-1, and EHV-4 as members of a novel family of viral immune evasion proteins, inhibiting TAP through a variety of mechanisms.  相似文献   

6.
In this study, Equus caballus major histocompatibility complex class I (MHC-I) was identified as a cellular entry receptor for the alphaherpesvirus equine herpesvirus type 1 (EHV-1). This novel EHV-1 receptor was discovered using a cDNA library from equine macrophages. cDNAs from this EHV-1-susceptible cell type were inserted into EHV-1-resistant B78H1 murine melanoma cells, these cells were infected with an EHV-1 lacZ reporter virus, and cells that supported virus infection were identified by X-Gal (5-bromo-4-chloro-3-indolyl-β-d-galactopyranoside) staining. Positive cells were subjected to several rounds of purification to obtain homogeneous cell populations that were shown to be uniformly infected with EHV-1. cDNAs from these cell populations were amplified by PCR and then sequenced. The sequence data revealed that the EHV-1-susceptible cells had acquired an E. caballus MHC-I cDNA. Cell surface expression of this receptor was verified by confocal immunofluorescence microscopy. The MHC-I cDNA was cloned into a mammalian expression vector, and stable B78H1 cell lines were generated that express this receptor. These cell lines were susceptible to EHV-1 infection while the parental B78H1 cells remained resistant to infection. In addition, EHV-1 infection of the B78H1 MHC-I-expressing cell lines was inhibited in a dose-dependent manner by an anti-MHC-I antibody.Equine herpesvirus type 1 (EHV-1) is a major pathogen affecting horses worldwide. Clinical signs of infection range from initial respiratory distress, fever, inappetance, and malaise to more serious secondary conditions including paralysis in some cases and abortigenic disease in pregnant mares (2). The virus is readily spread via direct transmission from horse to horse or via contact with contaminated surroundings. Due to the latent program of the virus, there is a constant reservoir of EHV-1 within the equine population, and frequent reactivation events trigger outbreaks and expose naïve horses to the virus (35).At the cellular level, EHV-1 initially attaches to cells via an interaction between two of its glycoproteins, gC and gB, and cell surface heparin sulfate (36, 41). While these electrostatic interactions mediate virus binding, they do not trigger the entry of the virus into cells. For entry to proceed, a secondary triggering event mediated by gD must occur (10, 14). After entry is initiated, EHV-1 enters cells either by directly fusing with the plasma membrane or via endocytosis (17). After fusion between the viral envelope and a cellular membrane, viral capsids are released into the cytoplasm and then actively transported to the nucleus along microtubules (18).Previous studies showed that EHV-1 utilizes a cell receptor that is distinct from any of the known alphaherpesvirus entry receptors (14). The goal of the present study was to identify a functional EHV-1 entry receptor by screening an equine macrophage cDNA library. To identify a receptor, we transferred equine cDNAs (48) from an equine macrophage library into cells that are highly resistant to EHV-1. These cDNA-transduced cells were then screened for their ability to mediate EHV-1 infection. Using this approach, we successfully converted a set of highly resistant cells to a state of complete susceptibility to EHV-1. From this converted set of cells, we amplified and sequenced the incorporated equine cDNA. The sequencing results revealed that the equine cDNA isolated from our screen codes for Equus caballus major histocompatibility complex class I (MHC-I) protein, and further assays confirmed that this receptor is utilized by EHV-1 for entry into cells.  相似文献   

7.
We have defined that residues 46 and 54 on a synthetic peptide composed of residues 43–58 of pigeon cytochrome c (p43–58) work as agretopes (sites bound to an MHC molecule) in I-Ab mice. Substitution of amino acid residues on these positions altered the peptide to bind with the other MHC molecules. Furthermore, by substituting the agretopic residues with a variety of amino acids, we could determine the class II binding motif for each MHC molecule. In the present study, immunogenicity of a peptide, 46R50V54A, carrying valine (V) at epitopic (site bound to TCR) position 50, arginine (R) and alanine (A) at agretopic positions 46 and 54 of the p43–58, respectively has been analyzed in B10.PL (H-2u) mice. We found that this peptide bound to two different class II isotypes, I-Au and I-Eu. Arginine at position 46 or alanine at position 54 of the 46R50V54A was shown to be critical for binding to I-Au or I-Eu, respectively. Further, on the basis of this class II binding motif we could prepare potent peptide vaccines against influenza A/Aichi/2/68 virus in B10. PL mice.  相似文献   

8.
Equine herpesvirus type 9 (EHV-9), which we isolated from a case of epizootic encephalitis in a herd of Thomson''s gazelles (Gazella thomsoni) in 1993, has been known to cause fatal encephalitis in Thomson''s gazelle, giraffe, and polar bear in natural infections. Our previous report indicated that EHV-9 was similar to the equine pathogen equine herpesvirus type 1 (EHV-1), which mainly causes abortion, respiratory infection, and equine herpesvirus myeloencephalopathy. We determined the genome sequence of EHV-9. The genome has a length of 148,371 bp and all 80 of the open reading frames (ORFs) found in the genome of EHV-1. The nucleotide sequences of the ORFs in EHV-9 were 86 to 95% identical to those in EHV-1. The whole genome sequence should help to reveal the neuropathogenicity of EHV-9.  相似文献   

9.
The objective of this study was to develop a novel EvaGreen (EG) based real-time PCR technique for the simultaneous detection of Equine herpesvirus 1 (EHV-1) and Equine herpesvirus 4 (EHV-4) genomes from equine nasal swabs. Viral genomes were identified based on their specific melting temperatures (T m), which are 88.0 and 84.4 °C for EHV-1 and EHV-4, respectively. The detection limitation of this method was 50 copies/μl or 0.15 pg/μl for EHV-1 and 5 copies/μl or 2.5 fg/μl for EHV-4. This assay was 50–1,000 times more sensitive than the SYBR Green (SG)-based assay using the same primer pairs and as sensitive as the TaqMan-MGB probe-based assay. The validity of the real-time PCR assays was confirmed by testing 13 clinical samples. When all results of the EG, SG, and TaqMan probe-based singleplex and duplex real-time PCRs were considered together, a total of 84.6 % (11/13) horses and donkeys were positive for at least one virus. EHV-1 and EHV-4 coexisted in 81.8 % (9/11) horses. Overall, we report that the EvaGreen duplex real-time PCR is an economical and alternative diagnostic method for the rapid differentiation of EHV-1 and EHV-4 in nasal swabs.  相似文献   

10.
The cytolytic animal virus equine herpesvirus type 1 (EHV-1) was evaluated for its oncolytic potential against five human glioblastoma cell lines. EHV-1 productively infected four of these cell lines, and the degree of infection was positively correlated with glioma cell death. No human major histocompatibility complex class 1 (MHC-I) was detected in the resistant glioma line, while infection of the susceptible glioma cell lines, which expressed human MHC-I, were blocked with antibody to MHC-I, indicating that human MHC-I acts as an EHV-1 entry receptor on glioma cells.  相似文献   

11.
R A Robinson  D J O'Callaghan 《Cell》1983,32(2):569-578
The integration patterns of viral DNA sequences in three hamster embryo cell lines independently derived by transformation with equine herpesvirus type 1 (EHV-1) have been investigated by DNA blot hybridization analyses for the restriction enzymes Eco RI, Bgl II, Xba I and Bam HI with 32P-labeled selected DNAs from a collection of cloned EHV-1 restriction enzyme fragments as probes. These EHV-1-transformed cell lines contained subgenomic portions of the viral genome in an integrated state at multiple sites in the host genome. At least one copy of a viral DNA sequence mapping colinearly from 0.32 to 0.38 map units within the EHV-1 genome was common among these three EHV-1 transformed cell lines. The 0.32–0.38 viral DNA sequence was maintained stably even after 125 cell passages, whereas sequences from other positions in the EHV-1 genome were lost progressively during continued cell passage. The significance of the findings that these oncogenically transformed cell lines harbor a specific region of the EHV-1 genome is discussed with regard to stable maintenance of the oncogenically transformed state.  相似文献   

12.
Class I molecules of the MHC bind foreign and endogenous peptides allowing recognition by the TCR on CTL. The recognition and killing of cells infected with lymphocytic choriomeningitis virus (LCMV) depends on the recognition of LCMV peptides bound to class I MHC. Mutations in class I MHC molecules have enabled the delineation of regions in the class I molecule important for binding peptides and for interaction with the TCR. We have constructed a library of class I mutants using saturation mutagenesis and report a phenotypic change resulting from a single amino acid substitution that results in the heteroclitic (increased) killing of LCMV-infected cells. This amino acid change, asparagine to serine at position 30, is in a conserved region of the class I molecule contacting the alpha 3 domain. This mutation does not result in increased expression of the class I molecule on the cell surface, does not affect the binding of CD8, and does not affect allogeneic recognition. Cold target experiments show that this heteroclitic killing is due to increased recognition by CTL. These data point toward a critical function for this region of the class I molecule in the binding of peptides or their presentation to CTL.  相似文献   

13.
The well-described herpesvirus entry receptors HveA (TNFRSF14), HveB (nectin 2), and HveC (nectin 1) have been shown to mediate the entry of alphaherpesviruses. Our findings showed that the alphaherpesvirus equine herpesvirus 1 (EHV-1) efficiently entered and replicated in CHO-K1 cells that lack the entry receptors HveA, HveB, and HveC, demonstrating that EHV-1 utilizes a unique entry receptor. As with other alphaherpesviruses, efficient EHV-1 entry was dependent on glycoprotein D and cell surface glycosaminoglycans.  相似文献   

14.
We analyzed the phosphorylation and the dynamics of TCR/CD3, CD8 and MHC class I molecules during the activation of a CD8+ cytotoxic T lymphocyte clone and of CD8- T helper hybridomas transfected with the gene coding for the native (J. Gabert, C. Langlet, R. Zamoyska, J.R. Parnes, A.M. Schmitt-Verhulst, and B. Malissen. 1987. Reconstitution of MHC class I specificity by transfer of the T cell receptor and Lyt-2 genes. Cell 50:545) or truncated CD8 alpha molecule. The CD3 components gamma and epsilon and the CD8 alpha subunit were phosphorylated after activation of the CTL clone with the protein kinase C activator PMA. Class I MHC molecules were phosphorylated irrespective of PMA activation. Constitutive phosphorylation of the MHC class I products was found to be intrinsic to the transmembrane/cytoplasmic portion of the molecules because it was transferred to the CD8 alpha hybrid molecules composed of extracellular CD8 and MHC class I transmembrane and intracytoplasmic domains (CD8-e/MHC-t-i). Measurements of the dynamics of these cell surface molecules by using radiolabeled mAb revealed distinct behaviors: TCR/CD3 complex ligand internalization was increased (around 50% after 40 to 60 min) after PMA activation, whereas the ligand of class I MHC molecules was internalized at constant rate irrespective of PMA activation. Ligand bound to native CD8 molecules was poorly internalized, irrespective of the activation of the T cells with PMA. The same ligand bound to the CD8-e/MHC-t-i hybrid molecule was internalized at the same rate as a class I MHC molecule ligand, indicating that the behavior of the hybrid molecule was characteristic of the transmembrane/cytoplasmic portion of MHC class I molecules.  相似文献   

15.
Tapasin influences the quantity and quality of MHC/peptide complexes at the cell surface; however, little is understood about the structural features that underlie its effects. Because tapasin, MHC class I, and TAP are transmembrane proteins, the tapasin transmembrane/cytoplasmic region has the potential to affect interactions at the endoplasmic reticulum membrane. In this study, we have assessed the influence of a conserved lysine at position 408, which lies in the tapasin transmembrane/cytoplasmic domain. We found that substitutions at position K408 in tapasin affected the expression of MHC class I molecules at the cell surface, and down-regulated tapasin stabilization of TAP. In addition to affecting TAP interaction with tapasin, the substitution of alanine, but not tryptophan, for the lysine at tapasin position 408 increased the amount of tapasin found in association with the open, peptide-free form of the HLA-B8 H chain. Tapasin K408A was also associated with more folded, beta(2)-microglobulin-assembled HLA-B8 molecules than wild-type tapasin. Consistent with our observation of a large pool of tapasin K408A-associated HLA-B8 molecules, the rate at which HLA-B8 migrated from the endoplasmic reticulum was slower in tapasin K408A-expressing cells than in wild-type tapasin-expressing cells. Thus, the alanine substitution at position 408 in tapasin may interfere with the stable acquisition by MHC class I molecules of peptides that are sufficiently optimal to allow MHC class I release from tapasin.  相似文献   

16.
Powis SJ 《FEBS letters》2006,580(13):3112-3116
An association between the MHC class II chaperone molecule Invariant chain (Ii) and MHC class I molecules is known to occur, but the basis of the interaction is undetermined. Evidence is presented here that the CLIP region of Ii is involved in this interaction. A peptide encoding residues 91-99 of CLIP (MRMATPLLM) stabilised multiple MHC class I alleles, with the methionine residue at position 99 having a crucial role in binding to H2-K(b), whereas methionine at position 91 also appeared important in binding to RT1-A(a). Ii can also be detected in the class I MHC peptide loading complex. These data provide an explanation for the association of Ii and MHC class I molecules.  相似文献   

17.
Although CTL are critical for control of lentiviruses, including equine infectious anemia virus, relatively little is known regarding the MHC class I molecules that present important epitopes to equine infectious anemia virus-specific CTL. The equine class I molecule 7-6 is associated with the equine leukocyte Ag (ELA)-A1 haplotype and presents the Env-RW12 and Gag-GW12 CTL epitopes. Some ELA-A1 target cells present both epitopes, whereas others are not recognized by Gag-GW12-specific CTL, suggesting that the ELA-A1 haplotype comprises functionally distinct alleles. The Rev-QW11 CTL epitope is also ELA-A1-restricted, but the molecule that presents Rev-QW11 is unknown. To determine whether functionally distinct class I molecules present ELA-A1-restricted CTL epitopes, we sequenced and expressed MHC class I genes from three ELA-A1 horses. Two horses had the 7-6 allele, which when expressed, presented Env-RW12, Gag-GW12, and Rev-QW11 to CTL. The other horse had a distinct allele, designated 141, encoding a molecule that differed from 7-6 by a single amino acid within the alpha-2 domain. This substitution did not affect recognition of Env-RW12, but resulted in more efficient recognition of Rev-QW11. Significantly, CTL recognition of Gag-GW12 was abrogated, despite Gag-GW12 binding to 141. Molecular modeling suggested that conformational changes in the 141/Gag-GW12 complex led to a loss of TCR recognition. These results confirmed that the ELA-A1 haplotype is comprised of functionally distinct alleles, and demonstrated for the first time that naturally occurring MHC class I molecules that vary by only a single amino acid can result in significantly different patterns of epitope recognition by lentivirus-specific CTL.  相似文献   

18.
The Ag receptors on CD8+ CTL recognize foreign antigenic peptides associated with cell surface MHC class I molecules. Peptides derived from self proteins are also normally presented by MHC class I molecules. Here we report that an H-2Kd-restricted murine CD8+ CTL clone directed to an influenza hemagglutinin epitope can recognize a peptide derived from the murine mitochondrial aconitase enzyme in association with H-2Kd molecules. Surprisingly, this self peptide is not normally displayed on the cell surface associated with the restricting MHC class I molecule. Several lines of evidence suggest that this self peptide, although requiring association with the Kd molecule for CTL recognition, is not associated with this or other MHC class I allele under physiologic conditions in intact cells. Rather, it is sequestered in the cytoplasm associated with a carrier protein and is released only upon cell disruption. These results suggest a means of restricting the entry of self peptide into the class I pathway. In addition, this finding raises the possibility that self peptides sequestered within the cell can, after release from damaged cells, interact with MHC class I molecules on bystander cells and trigger autoimmune injury by virus-specific CTLs during viral infection.  相似文献   

19.
Equine herpesvirus type 1 (EHV-1) causes respiratory disorders and abortion in equids while EHV-1 regularly causes equine herpesvirus myeloencephalopathy (EHM), a stroke-like syndrome following endothelial cell infection in horses. Both EHV-1 and EHV-9 infections of non-definitive hosts often result in neuronal infection and high case fatality rates. Hence, EHV-1 and EHV-9 are somewhat unusual herpesviruses and lack strict host specificity, and the true extent of their host ranges have remained unclear. In order to determine the seroprevalence of EHV-1 and EHV-9, a sensitive and specific peptide-based ELISA was developed and applied to 428 sera from captive and wild animals representing 30 species in 12 families and five orders. Members of the Equidae, Rhinocerotidae and Bovidae were serologically positive for EHV-1 and EHV-9. The prevalence of EHV-1 in the sampled wild zebra populations was significantly higher than in zoos suggesting captivity may reduce exposure to EHV-1. Furthermore, the seroprevalence for EHV-1 was significantly higher than for EHV-9 in zebras. In contrast, EHV-9 antibody prevalence was high in captive and wild African rhinoceros species suggesting that they may serve as a reservoir or natural host for EHV-9. Thus, EHV-1 and EHV-9 have a broad host range favoring African herbivores and may have acquired novel natural hosts in ecosystems where wild equids are common and are in close contact with other perissodactyls.  相似文献   

20.
Control of a naturally occurring lentivirus, equine infectious anemia virus (EIAV), occurs in most infected horses and involves MHC class I-restricted, virus-specific CTL. Two minimal 12-aa epitopes, Env-RW12 and Gag-GW12, were evaluated for presentation by target cells from horses with an equine lymphocyte Ag-A1 (ELA-A1) haplotype. Fifteen of 15 presented Env-RW12 to CTL, whereas 11 of 15 presented Gag-GW12. To determine whether these epitopes were presented by different molecules, MHC class I genes were identified in cDNA clones from Arabian horse A2152, which presented both epitopes. This horse was selected because it is heterozygous for the SCID trait and is used to breed heterozygous females. Offspring with SCID are used as recipients for CTL adoptive transfer, and normal offspring are used for CTL induction. Four classical and three putative nonclassical full-length MHC class I genes were found. Human 721.221 cells transduced with retroviral vectors expressing each gene had equine MHC class I on their surface. Following peptide pulsing, only cells expressing classical MHC class I molecule 7-6 presented Env-RW12 and Gag-GW12 to CTL. Unlabeled peptide inhibition of (125)I-labeled Env-RW12 binding to 7-6-transduced cells demonstrated that Env-RW12 affinity was 15-fold higher than Gag-GW12 affinity. Inhibition with truncated Env-RW12 demonstrated that amino acid positions 1 and 12 were necessary for binding, and single substitutions identified positions 2 and 3 as possible primary anchor residues. Since MHC class I 7-6 presented both epitopes, outbred horses with this allele can be immunized with these epitopes to optimize CTL responses and evaluate their effectiveness against lentiviral challenge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号